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Abstract
The article presents a system for testing the independence of solutions to algorith-
mic problems sent by students as part of the student programming competition.
First, the context was discussed, as well as the need to organize programming
competitions resulting from this context. Then, an algorithm was proposed to
study the mutual similarity of source codes of programs sent as part of a pro-
gramming competition. Since, after implementation, the algorithm was used in
practice, examples of its application for detecting the plagiarism of source codes
of solutions in two programming competitions conducted as part of classes on Al-
gorithms and Numerical Methods were also presented. Finally, the effectiveness
of the solutions used in the work was discussed.

Keywords — source code plagiarism, Levenshtein distance, Levenshtein similarity, similarity
relation, propensity to plagiarism

1 Introduction

One of the elements of information technology studies is teaching the basics of programming.
By programming, the authors of the article understand a certain sequence of activities that lead
to the creation of a program that is used to solve some practical problem. The sequence de-
scribed here will be a simplified model of the programming process and probably within it there
will be some nuances that we will not consider in this article. However, within this sequence, in
a intuitive way, certain steps will be identified that lead to the creation of a computer program:

• First the problem to be solved should be identified;

• Then an algorithm should be found that will solve the problem;

• In turn, the algorithm should be written in the form of a program in a certain program-
ming language;
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• Finally, the program should be started and tested.

While teaching programming, there are some problems that interfere with this process. These
problems should be prevented. An important way to prevent problems is continuous program-
ming, similar to sports training. For this purpose, you can use the dedicated programming
competition on the portal offering competitions.

Students should fairly participate in the competition. However, one cannot forget that par-
ticipation in the program competition may be dishonest. This may manifest itself, for example,
in plagiarizing the solutions of other participants. Plagiarism is not uncommon, but this is not
a local case either. Whole scientific conferences are devoted to plagiarism [1]. We can look at
plagiarism from different points of view. On the one hand, it is talked about in the context of
school systems [2] [3], on the other hand, it is talked about in the context of cultural differences
[4][5][6][7].

This article considers possible problems that occur in teaching programming and proposes
ways to counteract these problems, both from the point of view of the student’s goals and from
the point of view of the teacher’s goals. In particular, a simple method was proposed for testing
the level of plagiarism of source code from other participants of the programming competition.
The effectiveness of the proposed method was also analyzed.

2 Preliminaries

The preliminaries will present some problems that occur in the programming teaching process.
These can be workshop problems of a technical nature, but also mental problems. Program-
ming competitions that can be an antidote to these problems will also be presented. The issues
presented here will provide a context for the presentation of further activities undertaken as part
of programming teaching classes.

2.1 Problems encountered while learning programming

Students starting the process of learning the basics of programming have very diverse experi-
ence. It can be assumed that this experience falls within a range limited by two extremes. On
the one hand, they are people who have considerable knowledge and skills in programming. On
the other hand, there are people who have no experience in programming, and as a result of lack
of education, they have too little knowledge of the basics of mathematics, and in particular too
little knowledge of mathematical logic.

Teaching students who do not have basic mathematical and logical knowledge is a chal-
lenge. In order to meet this challenge, one should more accurately diagnose and list potential
difficulties in the programming teaching process. If we assume that these students can fill gaps
in mathematical and logical knowledge as part of mathematics classes, there are still two groups
of difficulties to overcome. The first group of difficulties are workshop difficulties. The second
group is mental difficulties.
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2.1.1 Workshop difficulties

Programming presupposes knowledge of some programming language as well as knowledge of
algorithms. It can usually be assumed that at the very beginning of the course the student knows
a certain programming language. Also, the need to learn a new programming language should
not be a problem as long as the student sees analogies between different languages: between
their dictionaries and also between their grammars. Perhaps a slightly bigger problem is the
change in the programming paradigm with the change of language. However, it seems that this
problem also disappears with the experience gained.

In turn, programming requires knowledge of algorithms and the ability to consciously use
them. Here the matter is more complex. On the one hand, there are difficult problems for which
effective algorithms are not known. For example, the problem of integer factorization is such
a difficult problem. On the other hand, many algorithms have been discovered and described.
Their description can be found in textbooks, in professional magazines or on the Internet. In
this case, it is enough to read, understand and consciously encode them.

2.1.2 Mental problems

At the initial stage of programming learning, it can be assumed that neither the problems solved
are too complex nor the language structures used are very complicated. Despite this, in many
cases students learning programming can still see some inability. This is followed by an internal
conviction that this inability cannot be overcome. The student is convinced that he can not solve
the problem, because the problem is too complex and exceeds its capabilities. He can’t solve it
now and will never be able to solve it. So he has the right to think he’s of little value.

Is there a way out of this circle of impossibility? An analogy with sport comes to mind
immediately. Nobody gets record results at the beginning of their sports path. The results may
appear later if they are preceded by appropriate training. By training, the technique improves
systematically, but the body’s capabilities also increase. Training starts with the simplest ele-
ments. As the technique improves and the body’s capabilities increase, workouts are expanded
with new elements. Over time, comparing his previous results with what he is achieving now,
the athlete notices that his confidence increases, and therefore his self-esteem increases. Initial
weakness was overcome.

The same can be done when learning programming. At the beginning of the road you
should start by solving numerous, but the simplest programming tasks. Over time, more and
more complex problems will obviously be solved, but more and more complex programming
structures will be used to solve them. With successive problems solved, successive degrees of
know-how will be achieved. Over time, the initial circle of inability will be weakened or even
completely eliminated. In this way, existing mental barriers will be broken and self-esteem will
return.

2.2 Programming competitions

In learning programming, web portals that offer the ability to solve programming tasks are
useful. There are many such portals. Examples are: http://solve.edu.pl https://www.spoj.com/.
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After registering, you can solve the competition tasks offered by the portal. Each task contains
a description of the problem to be solved, sample test data and the correct program result for
that data. After logging in, a task is selected, the solution of which will be a working program
written in one of the available programming languages. Using the available interface, the source
code of the written program is sent to the system. The system will check the correctness of the
submitted solution. If the source code you submitted contains syntax errors, the system will
inform you about it. The solution can be sent again after correcting the errors. When there
are no syntax errors, the program is compiled and then repeatedly run for different sets of test
data. The program results are compared with the reference results. If the result of the program
is correct for all test sets, then a message about accepting the task appears. Otherwise, error
messages will appear. It can be a message saying that the program gave the wrong answer, or
that its operation exceeded the allowable time limit, i.e. the program did not finish within the
specified time interval, or that another error occurred while the program was running. With such
messages, it is still possible to go back to the source code and improve it [8].

3 Dedicated programming competitions in algorithm teaching

The first author of this article at Computer Engineering Studies conducts Algorithm classes for
students of the third semester, and also conducts classes in Numerical Methods for students of
the fifth semester. It should be emphasized that determining the final grade for each participant
of these classes is a big challenge. In this context, two facts are important:

• Portal https://www.spoj.com/ offers programming competitions.

• On this portal, the second author of this article has administrative privileges, while the
first author of this article has judicial privileges.

It was decided to use these facts in didactics. For the students taking part in the abovementioned
classes, two competitions were organized in the winter semester of the 2018/2019 academic
year. The algorithmic competition was available at https://www.spoj.com/WWSIASD/, while
the numerical competition was available at https://www.spoj.com/WWSIMN/. The competition
tasks included solving problems for which effective algorithms are known and described. It
was only necessary to know these algorithms, to understand them and to code them themselves.
Solutions for individual tasks could be sent to the checking system from the moment these tasks
were visible in the competition participant’s panel. Solving time was set individually for each
task. Usually this time ranged from seven to fourteen days. At the end of the semester, based
on the competition ranking, a list of people who passed the exam was proposed. These people
also received the final grade from the classes.

As the experiment was considered successful, similar competitions were organized in the
winter semester of the 2019/2020 academic year.

3.1 The problem of reliability of final grades

Because the competition tasks concerned well-known problems, the participants of the com-
petition could search for appropriate algorithms in textbooks, in professional magazines or on
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the Internet. Cooperation between competition participants was not excluded. This cooperation
could include, for example, help in understanding the algorithm. The only practical limitation
in solving tasks is that their solutions are not thoughtlessly copied using the ”copy” and ”paste”
shortcuts.

Although cooperation is permissible, one should be aware that it may also carry some dan-
gers related to the integrity of solutions. The student group participating in the class consists of
many people. Different people will represent different attitudes towards the group’s standards.
The group will include people whose attitude will oppose breaking the norms. However, it
cannot be ruled out that those who break the standards will also be found there. Since social
relations should be based on trust, a lecturer conducting group classes should assume the good
will of all group members. This assumption has its rational justification:

• For the average person, deliberate violation of established norms leads to internal anxiety.

• Paying tuition fees for learning and rejecting learning opportunities is nonsensical from
an economic point of view.

On the other hand, the assumption of good will of class participants does not absolve the lecturer
from checking the integrity of the work they send. In particular, it should be examined whether
the solutions sent are not plagiarism of the work of other participants of the competition. This
is not an easy issue, if only because in some cases an identical or almost identical solution will
not indicate plagiarism, but rather that the algorithm cannot be written significantly differently.
An example of such a situation would be coding of some well-known algorithm, e.g. Euclid’s
algorithm for finding the largest common divisor of two positive integers. This simple algorithm
has the form:

gcd(a, b) =

{
a, if b = 0.

gcd(b, a mod b), otherwise.
(1)

In the case of an algorithm with such a simple structure, it can be assumed with a high degree of
certainty that in a given programming language its implementations will not differ significantly.
Unfortunately, hence the conclusion that testing the independence of solutions cannot be limited
to a simple analysis of the similarity of the source code of the programs. The assessment of the
solution should also take into account the context in which the similar fragments of the source
code occur.

4 Detection of source code plagiarism in programming competitions

In response to the problem of plagiarism, there are methods and tools that try to counteract this
problem [9][10][11][12][13]. This article also proposes some way of identifying plagiarism. A
program has been developed that allows the analysis of mutual similarity between the source
codes of the programs that were sent for evaluation. The proposed solution is relatively simple,
and thus does not take into account many particularly perfidious threats. However, the authors
of the article assumed that in a situation where the deadline for sending source codes of solved
programming problems is approaching, and therefore in a situation of permanent time pres-
sure, the participants of the competition will not be able to use more sophisticated methods of
plagiarism.
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4.1 A measure of similarity between source codes

First of all, the dissimilarity of the source codes of the programs submitted for verification
in the competition was analyzed. For this purpose, the algorithm of finding the edit distance
between two ASCII strings was used [14]. At the input of the algorithm (called the Levenshtein
algorithm) were given two properly prepared strings of characters. Each string represented one
of the source codes. The result of the program was the Levenshtein distance, informing about
the difference between the two strings, measured by the smallest number of simple operations
needed to transform one string into another.

Preliminary preparation of string should prevent potential errors in the analysis of their
(dis)similarities:

• The programs compared were mostly written in C++ language. In turn, any program
written in this language requires the application of specific preprocessor directives. On
the other hand, without affecting the correct operation of the program, the preprocessor
directives could be added to confuse the algorithm that compares the source codes of the
two programs. Because the preprocessor directives do not affect the similarity level of
the two source codes, therefore, all preprocessor directives, i.e. all strings beginning with
the ”#” character, were omitted in the analysis.

• Also, the comments do not affect the correct operation of the program. On the other
hand, comments can be formed freely, if only to deceive the program examining the
similarity of two source codes. Therefore, in the analyzed source codes all comments
were omitted, both those preceded by the pair of characters ”//”, as well as comments
between the separators ”/*” and ”*/”.

• Two identical source codes can be differently formatted, i.e. they can differ by any
number of whitespace. Because the excess of whitespace does not affect the correctness
of the program code, and may confuse the algorithm comparing the two source codes, so
before finding the edit distance of these codes, all whitespace was removed from them.

After the initial preparation of the source codes, their mutual edit distance dL was calculated. At
the known edit distance of two strings, if the length of the strings being compared is not known,
it cannot be clearly stated how (dis)similar the two strings are. With short strings, the similarity
will be large, and with long strings, the similarity will be small. It seems that instead of the
edit distance, a relative measure of similarity in the [0, 1] range would be better. Levenshtein
similarity [15] could be such a measure:

SL = 1− dL
max (m,n)

(2)

The following designations have been adopted in the above formula:

• SL - Levenshtein similarity,

• dL - Levenshtein edit distance,

• m,n - lengths of compared strings.
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Since Levenshtein similarity is a number in the range of [0, 1], they can also be expressed as a
percentage.

For the purposes of assessing the similarity of the two source codes, the above measure of
similarity was used. This measure was estimated for a given task, for all pairs of its solutions
that were accepted by the checking system. In this way, for a given task, for k analyzed source
codes from k different students, a square symmetrical similarity matrix with the size k× k was
obtained. The values in the matrix were in the range of [0, 1]. On its diagonal were unit values.

4.2 Assessment of plagiarism propensity

A given row of Levenshtein similarity matrix contains levels of similarity of the solution sent by
a given student with solutions sent by all other students. The values in the rows of this similarity
matrix are numbers from the range [0, 1]. From the analysis of formula (2) it can be concluded
that for Levenshtein’s similarity of two strings to reach zero value, their edit distance must be
equal to the greater of the two lengths of the compared strings. Intuition suggests that in the
case of program source codes, zero similarity values are unlikely.

The unit values on the diagonal of the matrix describe the similarity of the source codes
sent for assessment to themselves. Non-diagonal values in a given row of the similarity matrix
characterize the similarity of the source code sent by a given competitor to the source codes
of other competitors. At least one of the non-diagonal values takes the maximum value. It
can be assumed that this maximum value, denoted as P , characterizes the student’s propensity
for plagiarism. If the P value is small, it means that the solution sent is significantly different
from the other solutions. In the opposite case, the participant could not or did not want to
send an independent solution to the task in the competition. In the first case, the propensity for
plagiarism is imperceptible. In the second case, it is significant.

Finding the values of plagiarism propensity for all students participating in the competi-
tion, using descriptive statistics tools, it is possible to find features of the plagiarism propensity
distribution, specific for the whole group of competition participants.

4.3 The relation defined at a given level of similarity

For further analysis, the maximum threshold of acceptable similarity was arbitrarily assumed.
If the similarity value exceeded this threshold, it was assumed that the two source codes were
too similar to recognize the independence of the solution. In this way, the case of plagiarism
was identified. Otherwise, the plagiarism problem was considered to be non-existent. It can be
assumed that those solutions whose similarity is greater than a given threshold are in mutual
relation with each other. Otherwise, the relation does not occur. In this way, the relation matrix
[16] can be formed from the similarity matrix. If any codes are in relation to other source codes,
they are the result of plagiarism. Those source codes that are not related to any other were not
plagiarized. The relation matrix is a binary symmetrical matrix containing unit values on the
diagonal. This means that this relation is at least reflexive and symmetrical, so it is a relation
of similarity [17]. If additionally it is a transitive relation, it is also an equivalence relation.
Using the relation matrix, you can draw a graph of it that shows the existing relations between
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the analyzed source codes. The graph will consist of connected components. Each connected
component represents the similarity class, while the similarity class represents the groups of
competitors whose cooperation consisted in copying the finished source code. If the similarity
class (connected component of the graph) contains only one node, then the participant of the
competition corresponding to this node of the graph, submitted for assessment a solution of a
task that is not similar to other solutions. This solution is not plagiarism.

A simple analysis of the similarity graph is not enough to evaluate the solutions submitted.
Graph nodes should be clustered. Based on the obtained adjacency matrix of the relation graph,
adjacency lists can be created. By using these adjacency lists, the DFS algorithm can identify
connected components of a graph [14]. Each connected component represents a list of similar
solutions, i.e. those solutions that plagiarize each other.

4.4 The problem of the final grade for the competition

The proposals presented above give the opportunity to find interdependencies between the so-
lutions submitted so far. These results can be used to give a final grade for participation in the
competition. The easiest way to get the final ranking is to analyze the number of tasks solved.
If the competition participant receives one point for each correctly solved task, then the ranking
list of competition participants may be formed after the competition. By setting the bound-
ary, students can be divided into those who passed the classes and those who need to improve
them. On the basis of the ranking, those who passed the classes can be assigned final grades for
participation in the classes.

The problem arises when the phenomenon of plagiarism is identified in the group. In this
case, students plagiarizing should be disqualified or at least should lower their position in the
final ranking. Here are two solutions. The first solution links the score for the task, with the
hypothetical contribution of the participants of a given plagiarizing cluster to solving the task.
If more than one student has been identified in the cluster, assuming an even contribution of all
cluster participants to the solution of this task, each student can be awarded only the part of the
task score that is proportional to its contribution to the solution. For a cluster consisting of n
students, each of the students belonging to a given cluster may be awarded with a prize of 1/n
point for their contribution to the solution of a given task:

G =
1

n
. (3)

In the second solution, the student’s grade for a given task sent in the competition can be made
dependent on his propensity to plagiarize P (see subsection 4.2). There can be at least two ways
to evaluate the task submitted in the competition:

• Student can be assessed binary. With the propensity P not less than the assumed thresh-
old ε, the G grade obtained for the task will be zero points, otherwise one point will be
awarded:

G =

{
1, if P < ε.

0, otherwise.
(4)
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This method is analogous to the method used to form the relation matrix in subsection
4.3.

• If the propensity P is not less than the assumed threshold ε, the student can be assigned a
G grade which is the difference between the grade possible in the absence of plagiarism
(S = 1) and the similarity:

G =

{
1, if P < ε.

1− p, otherwise.
(5)

In the absence of plagiarism, the similarity value S will practically never reach zero.
Therefore, for sufficiently low values of similarity S (S < ε), the author of the solution
is awarded one point per task.

4.5 Algorithm for detecting source code plagiarism

The analysis presented above allows to describe in detail the algorithm for testing plagiarism of
source codes of programs written as part of a programming competition. The algorithm consists
of the following steps:

1. For a given competition task, read all the source codes of accepted solutions and trans-
form them into a string of characters that can be processed by the Levenshtein algorithm
(see subsection 4.1). When loading each of the source codes, the following elements
should be eliminated from the code:

• Preprocessor instructions;
• Comments;
• Whitespace (spaces, tabs, end of line characters).

2. For all pairs of transformed Ki and Kj source codes such that j > i, using the Lev-
enshtein algorithm, find the edit distance dL [14]. Complete the edit distance matrix:
Dij = Dji = dL.

3. Based on the edit distance matrix D, using the formula (2) estimate the similarity matrix
S;

4. On the basis of the S similarity matrix, for participants of the competition who submit-
ted the correct solution, find the plagiarism propensity vector P (see subsection 4.2).
Subsequent elements of the plagiarism propensity vector P will contain the maximum
non-diagonal values of subsequent rows of the S matrix:

Pi = max
j,j 6=i

Sij . (6)

5. Establish an ε plagiarism limit. Using the ε value, form the relation matrix R from the
similarity matrix S:

Rij =

{
1, if Sij ≥ ε.

0, otherwise.
(7)
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6. Using the R graph adjacency matrix (7), form the graph’s adjacency lists.

7. Using the adjacency lists, use the DFS algorithm [14] to find connected components of
a relation graph. Nodes belonging to a given connected component will represent the
source codes of mutually plagiarized programs.

8. Based on the number of nodes belonging to subsequent connected components (Formula
(3)) or on the basis of the propensity to plagiarism vector P (Formulas (4) or (5)), offer
subsequent competitors a score for a given task sent for assessment.

5 Examples

Examination competitions from classes in Algorithms and Numerical Methods were initiated in
the winter semester of the 2018/2019 academic year. While reading the source codes of some
solutions, it was noticed that some of them are very similar to each other. This persuaded the
lecturer to prepare an appropriate program for testing the independence of solutions, described
in subsection 4.5. Because the script was not yet ready, which was to extract the source codes
from the competition system, therefore the files were manually extracted. Source codes have
been extracted for one task from the algorithmic competition (120 correct solutions) and for
one task from the numerical competition (21 correct solutions). For both cases, an analysis of
plagiarism was performed. It was found that there are many source codes whose mutual simi-
larity is not less than 90%. The graph of similarity relation for source codes from Algorithms
is presented in Figure 1, and the graph of similarity relation for source codes from Numerical
Methods is presented in Figure 2. The histograms of plagiarism propensity observed during
classes from Algorithms and Numerical Methods are also compared. Figure 3 shows the results
of this comparison.

The results obtained were not optimistic. A lot of plagiarisms were sent for evaluation in
competitions, despite the fact that before the start of the competitions the teacher encouraged
students to cooperate in recognizing algorithms, but also urged them to be independent in coding
them. The students understood the first part of his appeal. They forgot the second part. Instead
of collaboration, there was cheating [18].

Because the analysis was made for one algorithmic problem and for one numerical problem,
therefore the lecturer’s activities could not be as radical as in the case of analyzing all solutions.
However, all students who found themselves in the circle of plagiarizing clusters suffered the
consequences. Their final grades for participation in classes were reduced to the level of the
lowest positive grades, allowing them to pass the classes.

Before the start of competitions in the 2019/2020 academic year, the lecturer conducting
the classes talked to students about plagiarism. This time he emphasized the absurdities of
plagiarism presented in subsection 3.1. Because the software analyzing plagiarism has already
been enriched with a script that from the competition system allows the automatic extraction
of source codes of submitted solutions, therefore in the current edition of the competitions, an
analysis of their honesty may be carried out for all submitted solutions.

At the beginning of December, that is at the time of finalizing this article, the competitions
reached their halfway point. An analysis of the level of plagiarism was performed for the
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Figure 1: Similarity relation graph for the solutions submitted. Sample algorithmic task
from the competition in the 2018/2019 academic year

Figure 2: Similarity relation graph for the solutions submitted. Sample numerical prob-
lem from the competition in the 2018/2019 academic year
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Figure 3: Comparison of histograms for plagiarism propensity during classes on Algo-
rithms and Numerical Methods. Competition in the 2018/2019 academic year.

source codes of the competition programs sent at the moment. In the following subsections of
this article, two representative examples of this analysis will be presented.

5.1 The task in the algorithmic competition in the 2019/20 academic year
- example of plagiarism analysis

Up to seventeen programming tasks can be solved in an algorithmic competition. Because the
competition has not ended yet, only the nine tasks that were completed were analyzed. As an
example, a task that has been solved by 166 students will be presented.

All source codes of correct solutions submitted have been subjected to anti-plagiarism anal-
ysis. According to the procedure described above, the Levenshtein distance and Levenshtein
similarity were calculated for each pair of codes (see subsection 4.1). There were 13695 of all
compared different pairs containing different elements in a pair. For all pairs, both for distance
and similarity, selected statistics were calculated (Table 1). Figure 4 presents the histogram for
the code similarity distribution.

Finding a good border between plagiarism and non-plagiarism is a major challenge. Since
there is no explicit criterion for what level of similarity can be considered evidence of plagia-
rism, a similarity threshold of 90% was applied. Certainly, below the threshold may be solutions
that were plagiarism. However, it seems that a lesser mistake is to underestimate plagiarism than
to overestimate. The acceptable level adopted in this study is of common sense. A relation ma-
trix was formed for the adopted similarity threshold. The relation is reflexive and symmetrical,
but it is not a transitive relation (Figure 5). That means it’s a relation of similarity [17]. The
graph’s connected components represent similarity classes of this relation. Each node in the
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Table 1: Statistics calculated for both Levenshtein distance and Levenshtein similarity.
The algorithmic task from the competition in the academic year 2019/2020

Statistics Levenshtein distance Levenshtein similarity

Average 137.5 41.34%

Median 95 40.70%

Standard deviation 145.6 14.16%

Range 866 92.42%

Minimum 0 7.58%

Maximum 866 100%

Figure 4: Histogram of similarity distribution of different source codes. The algorith-
mic task from the competition in the academic year 2019/2020
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Figure 5: Similarity relation graph for the solutions submitted. The algorithmic task
from the competition in the academic year 2019/2020

Figure 6: Histogram of plagiarism propensity distribution. The algorithmic task from
the competition in the academic year 2019/2020
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Table 2: Distribution of nodes between clusters. The algorithmic task from the compe-
tition in the academic year 2019/2020

The types of clusters The content of the clusters

8 nodes in the cluster {2, 9, 24, 33, 57, 86, 105, 153}
4 nodes in the cluster {51, 62, 89, 95}
2 clusters with 3 nodes {16, 94, 98}, {20, 49, 65}
12 clusters with 2 nodes {3, 6}, {4, 37}, {17, 142}, {18, 19},

{26, 34}, {27, 123}, {53, 87}, {61, 125},
{75, 76}, {80, 155}, {88, 117}, {118, 161}

124 single-node clusters 1, 5, 7, 8, 10, 11, 12, 13, 14, 15,
21, 22, 23, 25, 28, 29, 30, 31, 32, 35,

36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 50, 52, 54, 55, 56, 58, 59, 60, 63, 64,
66, 67, 68, 69, 70, 71, 72, 73, 74, 77, 78,
79, 81, 82, 83, 84, 85, 90, 91, 92, 93, 96,

97, 99, 100, 101, 102, 103, 104, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 119, 120,
121, 122, 124, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 143,
144, 145, 146, 147, 148, 149, 150, 151, 152, 154,
156, 157, 158, 159, 160, 162, 163, 164, 165, 166

Table 3: Statistics calculated for the level of plagiarism propensity. The algorithmic
task from the competition in the academic year 2019/2020

Statistics Propensity level

Average 75.8%

Median 76.4%

Standard deviation 17.3%

Range 71.3%

Minimum 28.7%

Maximum 100%
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Table 4: Statistics calculated for both Levenshtein distance and Levenshtein similarity.
Numerical problem from the competition in the academic year 2019/2020

Statistics Levenshtein distance Levenshtein similarity

Average 753.64 44.42%

Median 912 29.44%

Standard deviation 445.16 31.42%

Range 1452 85.33%

Minimum 0 14.67%

Maximum 1452 100.00%

graph represents one valid solution presented by one student. Each edge in the graph represents
plagiarism between two different solutions. Each connected component of the graph represents
a group of students who plagiarized the solution together.

Simple graph analysis is not enough to evaluate solutions. Graph nodes should be clustered.
Therefore, based on the obtained adjacency matrix, adjacency lists were formed. These adja-
cency lists were used in the DFS algorithm [14] to find graph’s connected components. In this
way, lists of similar solutions were obtained, i.e. plagiarized solutions were identified. Table 2
shows the identified distribution of nodes between clusters.

Based on the similarity matrix obtained for the solutions of a given task, the plagiarism
propensity vector was estimated. Statistics were also estimated for this vector (Table 3). Figure
6 also shows a histogram of plagiarism propensity distribution.

After the analysis, it would be possible to proceed to the final assessment for the solved task.
However, given the fact that the algorithmic competition has not yet been closed, it has been
decided that the final score for the tasks will be awarded only after the end of the competition
in order to more reliably take into account all circumstances that may affect the final grades.

5.2 Problem in the numerical competition in the 2019/20 academic year
- an example of plagiarism analysis

Up to thirteen programming problems can be solved in a competition run as part of Numerical
Method classes. At the time of finalizing this article at the beginning of December 2019, the
competition reached its halfway point and is still ongoing. Therefore, only eight tasks were
analyzed, which were completed. As an example, a problem will be presented that has been
solved by 60 students.

In accordance with the procedure described above, all source codes of correct solutions
that were sent for evaluation were subjected to anti-plagiarism analysis. Levenshtein distance
and Levenshtein similarity were calculated for each pair of codes. There were 1770 of all
compared different pairs containing different elements in pair. Both for Levenshtein distance
and for Levenshtein similarity selected statistics were calculated (Table 4). Figure 7 presents
the histogram for the similarity distribution of the source codes sent for evaluation.
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Figure 7: Histogram of the similarity distribution of different source codes. Numerical
problem from the competition in the academic year 2019/2020

Figure 8: Similarity relation graph for the solutions submitted. Numerical problem
from the competition in the academic year 2019/2020
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Figure 9: Histogram of plagiarism propensity distribution. The algorithmic task from
the competition in the academic year 2019/2020

Table 5: Distribution of nodes between clusters. Numerical problem from the competi-
tion in the academic year 2019/2020

The types of clusters The content of the clusters

4 nodes in the cluster {7, 10, 12, 27}
5 clusters with 2 nodes {3, 19}, {4, 26}, {20, 54} , {40, 46}, {42, 47}
46 single-node clusters 1, 2, 5, 6, 8, 9, 11, 13, 14, 15, 16, 17, 18,

21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 48,
49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60

Table 6: Statistics calculated for the level of plagiarism propensity. The numerical
problem from the competition in the academic year 2019/2020

Statistics Propensity level

Average 78.39%

Median 81.66%

Standard deviation 15.27%

Range 62.10%

Minimum 37.90%

Maximum 100%
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In this case, a safe plagiarism level of 90% was also adopted, for which a similarity relation
matrix was obtained. Figure 8 presents a graph of this relation containing similarity classes. As
in the previous competition, the node in the graph represents one correct solution sent. Each
edge in the graph represents the similarity between two different solutions.

Based on the obtained adjacency matrix, adjacency lists were formed, which were used in
the DFS algorithm [14] to find connected components of the graph. In this way, lists of similar
solutions were obtained, i.e. clusters containing plagiarized solutions were identified. Table 5
shows the distribution of nodes between clusters.

As before, for the algorithmic task, also for the numerical problem, for propensity to pla-
giarism, statistics were estimated (Table 6), and the histogram was presented (Figure 9).

Since the plagiarism analysis of the task was performed, it would also be possible to proceed
to final assessment for the completed task. As the numerical competition was also not closed,
it was also decided that the final score for the tasks would be awarded only after the end of
the competition. As with the algorithmic competition, the goal of this decision is to be more
reliable in considering all circumstances that may affect the final results of the competition.

6 Conclusions

This article presents a system for testing the independence of source codes sent by students as
part of the student programming competition. In particular, the context and the resulting need
to organize algorithmic competitions were discussed. It has been noticed that there are some
difficulties in programming teaching. On the one hand, these are workshop difficulties resulting
from a lack of knowledge or experience. On the other hand, there are mental difficulties, man-
ifested in the lack of faith in one’s own abilities. Both types of difficulty can be overcome by
systematically programming. Programming competitions may encourage systematic program-
ming. It can be seen that the situation in programming teaching is analogous to that in sport,
when systematic training, on the one hand, improves efficiency and technique, and on the other
increases self-esteem.

Participation in competitions has its good points. However, it may be accompanied by
pathological phenomena such as plagiarism. It has been noted that such situations can be coun-
tered by the awareness that certain actions may be unfair. If such awareness is lacking, then
there is still awareness of the lack of economic sense for such behavior. Plagiarism is an easy
solution, but it also takes away the opportunity to grow. Therefore, the anti-plagiarism attitude
can be supported by the awareness that money is spent on tuition fees, while at the same time
rejecting the possibility of personal development.

Because the level of maturity of students varies, so also their sensitivity and level of self-
awareness vary. Hence the certainty that plagiarism will continue to exist. Therefore, it should
also be fought with technical tools. This article proposes a systematic approach to this problem.
For this purpose, an algorithm has been proposed which uses the Levenshtein edit distance and
the concept of Levenshtein similarity. The algorithm allows to assess the mutual similarity of
two different source codes, as well as to assess the propensity for plagiarism. In addition, a
similarity relation can be defined based on the similarity matrix that allows clustering of source
codes into groups of mutually similar codes. The proposed algorithm has been implemented
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and tested on two examples. It was found that with its help it is possible to identify cases of
plagiarism.

By the way, one should notice the overall positive impact of the work being carried out.
Since the problem of source code plagiarism was studied over a certain period of time, the
effectiveness of anti-plagiarism activities could be seen. The first, preliminary studies were
conducted in the 2018/2019 academic year. The second research was conducted during the aca-
demic year 2019/2020. It was noted that from year to year the integrity of the source codes sent
significantly improved. In most cases, the problem of plagiarism in the 2019/2010 academic
year was significantly smaller than in the competitions of the 2018/2019 academic year. Of
course, there is no certainty here whether it was influenced by the teaching activities undertaken
by the lecturer or the fear of competition participants from detecting their dishonesty. However,
due to the final positive effect, it doesn’t matter much. Perhaps both activities had an impact on
this.

It remains to answer the question whether further activities can be undertaken in the area
described in the work. In particular, it seems that in the future it can also be examined whether
spectral clustering methods using a similarity matrix can be used for clustering.
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