
Zeszyty Naukowe WWSI, No 21, Vol. 13 2019, s. 7-22 
DOI: 10.26348/znwwsi.21.07 

 

Ensemble Classification:  
Example and Python Implementation 

 
 

Piotr Andziak*, Ewa Figielska** 
 

Warsaw School of Computer Science 
 

 
 

Abstract 
 

The paper presents an ensemble classification method based on clustering, 
along with its implementation in the Python programming language. An il-
lustrative example showing the method behavior is provided, and the results 
of a computational experiment performed on real life data sets are reported. 
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1. Introduction 
 

Machine learning is a science area which aims to get computers to learn like humans 
do or even better. The learning process is expected to improve over time, without 
human interaction, fed by new data sets which may contain information about the 
world, some observations or other kind of data used in the learning process [1]. 
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Supervised learning and unsupervised learning are two of the machine learning 
tasks [2].  
 The objective of supervised learning is to discover a function mapping an input 
to an output in a way learned from a training set. A training set consists of pairs: 
desired output values for input values. An algorithm learning the mapping function 
from the training dataset, in consecutive iterations is predicting the output which is 
compared to the desired output. The iterations continue until the algorithm achieves 
acceptable accuracy. The training set can be considered as a teacher supervising the 
learning process.  
 One of the subcategories of supervised learning is classification. The task of clas-
sification is to assign a new observation – a new input object – to one of the known, 
predefined categories. Assignment is performed based on the independent variables 
of the input object and the existing assignments learned from a training set.  
  
 

 
 

Figure 1. Ensemble classification 
 
To perform more accurate classification, a set of classification models can be used 
instead of a single model and their outputs combined by a voting method. Various 
ways of making a final output prediction exist in the literature, for example the voting 
method may choose as the final prediction the one which has more than half of the 
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votes (majority voting) or one with the greatest number of votes (plurality voting) or 
it can determine the final prediction with regard to weights of classifiers depending 
on their importance (weighted voting). The technique of combining the results from 
a number of models is called ensemble learning. In Figure 1, the idea of the ensemble 
classification is presented. 
 Unsupervised learning, in oppose to supervised learning, does not use a train-
ing set. This process is expected to deduce and uncover an insightful structure or 
distribution in a provided data set. There is no teacher/supervisor, there are no 
wrong and correct answers. Algorithm is left to itself to learn the structure in data 
and present it. One of the unsupervised learning techniques is clustering. The 
objective of clustering is to discover useful groups in the input dataset, which 
consist of similar, alike objects.   
 The aim of this paper is to present the concept of ensemble classification as 
well as to show how an ensemble classification algorithm can be implemented in 
the Python programming language. As an example of an ensemble classification 
algorithm we have chosen the method proposed by Xiao et al. in [3]. This method 
builds a set of classifiers using training sets produced by a clustering algorithm. 
Beside the details on the implementation of this method, we provide an illustra-
tive example and report some results of a computational experiment. 
  
2. Ensemble classification based on clustering 
 

In this section, we present a scheme of the ensemble classification algorithm 
based on clustering and the details of its implementation in the Python language. 
The results of the successive steps of the algorithm are shown using an illustra-
tive example. To make the explanation of the examples and implementation eas-
ier, a two-class classification problem is considered.  
 The presented algorithm proceeds in six steps as shown in Figure 2. In the 
first four steps, a classifier consisting of a set of single base classifiers is con-
structed using the training data set. In the last two steps, the class prediction for 
a new sample is carried out.   
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Figure 2. The algorithm 
 
In the next sub-sections, we explain the algorithm steps throughout their imple-
mentation, which is done in the Python 3.7 language. For the justification of the 
algorithm the reader is referred to [3]. 
 
2.1. Clustering 
 

For grouping data into clusters (Step 2 of the algorithm) the k-means algorithm [2] 
is used. The calculations are performed for different numbers of clusters, 𝐾, ranging 
from 2 to √|𝑆+| and to  √|𝑆−|  for sets 𝑆+ and 𝑆−, respectively. In order to assess 
the clustering result, the validity function 𝑉𝐹(𝐾) is calculated:  
 

𝑉𝐹(𝐾) = 𝐼𝑛𝑡𝑟𝑎 × 𝐼𝑛𝑡𝑒𝑟,                                           (1) 
 

where 𝐼𝑛𝑡𝑟𝑎 and 𝐼𝑛𝑡𝑒𝑟 are, respectively, an index of compactness of the clusters and 
an index of separation between clusters.  
 𝐼𝑛𝑡𝑟𝑎 represents the relative distance between each sample and the centroid of 
a cluster, with respect to the maximal distance between all samples and the centroid, 
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averaged over all clusters.  𝐼𝑛𝑡𝑒𝑟 considers the average distance between each pair 
of cluster centroids and the average distance of each cluster centroid to the center of 
all cluster centroids. Formally, the values of 𝐼𝑛𝑡𝑟𝑎 and 𝐼𝑛𝑡𝑒𝑟 are given by the fol-
lowing formulas [3]: 
 

𝐼𝑛𝑡𝑟𝑎 =
1

𝐾
∑

∑ |𝑋𝑖
𝑘−𝑟𝑘|

𝑚𝑘
𝑖=1

𝑚𝑘 max
𝑗∈[1,…,𝑚𝑘]

|𝑋𝑗
𝑘−𝑟𝑘|

𝐾
𝑘=1 ,                                    (2) 

 

𝐼𝑛𝑡𝑒𝑟 = exp (−
2 ∑ |𝑟𝑖−𝑟𝑗|1≤𝑖<𝑗≤𝐾 (𝐾(𝐾−1))⁄

∑ |𝑟𝑘−𝑟|𝐾
𝑘=1 𝐾⁄

),                              (3) 

 
where: 

𝑚𝑘 is the number of samples in cluster of index 𝑘, 
𝑋𝑖

𝑘  denotes sample 𝑖 belonging to cluster 𝑘, 
𝑟𝑘 is the centroid of cluster 𝑘, 
𝑟 is the center of all the cluster centroids.  

The values of 𝐼𝑛𝑡𝑟𝑎 and 𝐼𝑛𝑡𝑒𝑟 range from 0 to 1.  
 Smaller values of 𝐼𝑛𝑡𝑟𝑎 and 𝐼𝑛𝑡𝑒𝑟 indicate better compactness and separation, 
respectively. So, the best clustering result is the one with the minimal value of 
𝑉𝑃(𝐾). 
 In Figure 3, the implementation of the clustering function is shown. Parameter 
𝑠 stores the data set containing samples with either 1 or 0 class label. During the 
execution of the program, the clustering function is called twice, once with 𝑠 con-
taining data from set 𝑆+ and once with data from 𝑆−. The function successively 
checks the values of 𝑉𝑃(𝐾) for every 𝐾 bounded by 𝑘_𝑚𝑖𝑛 and 𝑘_𝑚𝑎𝑥 (which are 
equal to 2 and √|𝑆|, respectively). It chooses and returns the number of clusters, 𝐾, 
and the clusters themselves (in dictionary variable 𝑘_𝑜𝑝𝑡) for which 𝑉𝑃(𝐾) has the 
smallest value. 
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Figure 3. Clustering function  
 
2.2. Multiple classifier construction 
 
After grouping data into clusters, the training subsets for building classifiers are con-
structed by pairwise combination of clusters with different classes.  For constructing  
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def make_clusters(k_min, k_max, s):  

    k_opt = {'VF': 1, 'K': 0} 

    for K in range(k_min, k_max + 1, 1): #checking different numbers of clusters 

        kmeans = KMeans(n_clusters=K, random_state=0).fit(s) #calling k-means alg. 

 

        cluster_map = pandas.DataFrame() 

        cluster_map['data_index'] = s.index.values 

        cluster_map['cluster'] = numpy.array(kmeans.labels_).transpose() 

 

        centers = kmeans.cluster_centers_ 

 

        intra_k = 0 

        for k in range(0, K, 1): #calculating intra 

            dist_sum = 0 

            dist_max = 0 

            samples = cluster_map[cluster_map.cluster == k].reset_index(drop=True) 

____________________________________________ 

            for i in range(0, len(samples.index), 1): 

                dist = abs(distance.euclidean(s.loc[samples.loc[i,  

                                           'data_index'], :].values, centers[k]))      

                dist_sum += dist 

                if dist > dist_max: 

                    dist_max = dist 

            if dist_max > 0: 

                intra_k += dist_sum / (len(samples.index) * dist_max) 

        intra = intra_k / K 

        r_dist_sum = 0 

        for x in itertools.product(centers, centers): #calculating inter 

            if not (x[0] == x[1]).all(): 

                r_dist_sum += abs(distance.euclidean(x[0], x[1])) 

        D = 2 * r_dist_sum / (K * (K - 1)) 

        r0 = numpy.mean(centers) 

        r_to_r0 = 0 

        for r in centers: 

            r_to_r0 += abs(distance.euclidean(r, r0)) 

        b = r_to_r0 / K 

        inter = math.exp(-D / b) 

        vf = intra * inter 

        if k_opt['VF'] > vf: #uppading clustering results  

            k_opt['VF'] = vf 

            k_opt['K'] = K 

            k_opt['clusters'] = cluster_map 

            k_opt['centers'] = centers 

    return k_opt _________________________________ 
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classifiers three algorithms are selected: C4.5, CART [2] and SVM [4]. To construct 
C4.5 trees the implementation from Chefboost library [5] was used, while CART and 
SVM were sourced from Anaconda library [6]. 
 Figure 4 shows the function creating a multiple classifier. It takes as the parame-
ters the numbers of clusters 𝐾+ and 𝐾− in sets 𝑆+ and 𝑆− and sets 𝑆+, 𝑆− themselves 
(parameters 𝑘_𝑝_𝑜𝑝𝑡, 𝑘_𝑛_𝑜𝑝𝑡, 𝑠_𝑝𝑜𝑠, 𝑠_𝑛𝑒𝑔, respectively). The information about 
the classification algorithm to be used is passed to the function as parameter 𝑎𝑙𝑔. 
The constructed training sets 𝑇𝑆𝑗 and classifiers 𝐺𝑗 (𝑗 =  1, … , 𝐾+ ∙ 𝐾−) are stored 
in lists 𝑡𝑠 and 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠, respectively, and returned by the function. 
 

 
Figure 4. Multiple classifier construction 
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def make_classifiers(k_p_opt, k_n_opt, s_pos, s_neg, alg): 

    clasifiers = [] 

    ts = [] 

    gnn = 0 

    for i in range(0, k_p_opt['K'], 1):#performing pairwise combination 

        for k in range(0, k_n_opt['K'], 1): 

            tsj = pd.concat([s_pos.loc[s_pos['cluster'] == i], 

_____________________________s_neg.loc[s_neg['cluster'] == k]], axis=0, 

                             ignore_index=False) 

            ts.append(tsj) 

            #constructing classifier 

            if alg == 1:  # c45 

                config = {'algorithm': 'C4.5'} 

                gn = chef.fit(tsj.loc[:, tsj.drop(['cluster'],  

___________________                            axis=1).columns], config) 

                chef.save_model(gn, "model"+str(gnn)+".pkl") 

                gnn += 1 

            elif alg == 2:  # cart 

                tree = DecisionTreeClassifier() 

                gn = tree.fit(tsj.loc[:, tsj.drop(['Decision',  

___________________       'cluster'], axis=1).columns], tsj['Decision']) 

 

            elif alg == 3:  # svm 

                svmc = svm.LinearSVC(C=1.0, max_iter=1000000) 

                gn = svmc.fit(tsj.loc[:, tsj.drop(['Decision', 

___________________       'cluster'], axis=1).columns], tsj['Decision']) 

            clasifiers.append(gn) 

    return ts, classifiers 
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2.3. Prediction of a class label 
 

In ensemble classification, to determine the class label for a new sample 𝑋, the 
predictions from the multiple models are combined. To achieve this, first, the weight, 
𝑊𝑗, of each classifier 𝐺𝑗 is calculated on the basis of its accuracy in the neighborhood 
of sample 𝑋. Then, classifiers with the highest weights are selected and their predic-
tions are combined in a plurality voting. 
 

 
Figure 5. Prediction of a class label 
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for i in range(0, len(dataset_test.index), 1): #classifying each test sample 

    Wj = [] 

    accuracy = [] 

    Xc = dataset_test.loc[i, 'Decision'] 

    X = dataset_test.loc[i,dataset_test.drop(['Decision'],axis=1).columns] 

    X = pd.DataFrame(X.values.tolist(), X.index).transpose() 

    for j, g in enumerate(classifiers): #computing accuracy of classifiers 

        correct = 0                     #in the neighborhood of a test sample 

        tss = ts[j].reset_index(drop=True) 

        neighbors = len(tss) // 2  # M 

        nn = NearestNeighbors(n_neighbors=neighbors) 

        nn.fit(tss.loc[:,tss.drop(['Decision','cluster'],axis=1).columns]) 

        ngh = nn.kneighbors(X, return_distance=False) 

        txx=tss.loc[ngh[0],tss.drop(['Decision','cluster'],axis=1).columns] 

        result = {} 

        for index, row in txx.iterrows(): 

             vals = (row.to_list() 

             if alg == 1:  # c45 

                g = chef.load_model("model"+str(j)+".pkl") 

                result[index] = chef.predict(g, vals) 

            elif alg == 2:  # cart 

                result[index] = g.predict([vals])[0] 

            elif alg == 3:  # svm 

                result[index] = g.predict([vals])[0] 

        c = tss.loc[ngh[0], 'Decision'] 

        for index, row in result.items(): 

            if str(c[index]) == str(row): 

                correct += 1 

        accuracy.insert(j, (correct * 100) / len(result)) 

    for j, a in enumerate(accuracy): #calculating Wj for each classifier 

        if sum(accuracy) == 0: 

            Wj.insert(j, 0) 

        else: 

            Wj.insert(j, '{:.2f}'.format(a / sum(accuracy))) 

    max_value = max(Wj) 

    maxWj = [i for i, x in enumerate(Wj) if x == max_value] 

    result = list() 

    for indexvalue in maxWj: #classifying sample with classifiers with 

        if alg == 1:  # c45                                 highest Wj 

            classifiers[indexvalue] = chef.load_model("model" + str(indexvalue)+".pkl") 

            result.append(chef.predict(classifiers[indexvalue], X.values.tolist()[0])) 

        elif alg == 2: #cart 

            result.append(classifiers[indexvalue].predict(X)[0]) 

        elif alg == 3: #svm 

            result.append(classifiers[indexvalue].predict(X)[0]) 

    try: 

        result = mode(result) 

    except StatisticsError:  # if equal number of votes 

        result = random.choice(result) 
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In the implementation shown in Figure 5, in the first loop (lines 7-29), the accuracies 
of the classifiers in the neighborhood of sample 𝑋 are determined. For discovering 
the nearest neighbors of sample 𝑋 the 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 class from 𝑠𝑐𝑖𝑘𝑖𝑡 −

𝑙𝑒𝑎𝑟𝑛 Python library [7] is used. The neighborhood size is set in line 10 (here, to the 
half of the size of the training set), in line 11 an object of the 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 
class is created, which is then filled with all the data samples, from which a prede-
termined number of neighbors is selected (lines 12-14). The classification of the 
neighbor samples by means of the indicated classification model is carried out in 
lines 16-24. The accuracy of each classifier is equal to the ratio of the number of 
samples correctly classified to the total number of the nearest neighbors (line 29). 
The weight of a classifier is calculated as the ratio of its accuracy to the sum of the 
accuracies of all the classifiers (line 34). Sample 𝑋 is given a class label which is 
chosen by plurality voting from among the results of the classifiers with the greatest 
weights (lines 35-49).  
 
3. Illustrative example 

 
Figure 6. Data set  
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To test the implementation and visualize the execution of the algorithm, a data set 
was created which consists of 20 records described by 3 attributes, the last attribute 
has a binary nature and decides on the class of a sample. The data set is shown in 
Figure 6.  
 Before k-means clustering can be applied, the data set is split into two subsets 𝑆+ 
and 𝑆− according to a class label. The data from each subset are grouped into clus-
ters. Let’s consider grouping for the positive subset 𝑆+. 
 Clustering function applies k-means clustering and calculates validity function 
𝑉𝐹(𝐾) for 𝐾 = 2 and 3. The obtained results are as follows: 
for 𝐾 =  2,  𝑖𝑛𝑡𝑟𝑎 =  0.68, 𝑖𝑛𝑡𝑒𝑟 = 0.36 and 𝑉𝐹(2) =  0.24, 
for K = 3,  𝑖𝑛𝑡𝑟𝑎 =  0.81, 𝑖𝑛𝑡𝑒𝑟 = 0.40 and 𝑉𝐹(3) =  0.32 
 Because 𝑉𝐹(𝐾) has a smaller value for 𝐾 =  2 than for 𝐾 = 3,  𝑆+ is split into 
two clusters as shown in Figure 7. The same procedure is carried out for negative 
subset 𝑆−, for which the best setting is also 𝐾 = 2. 
   
 

 
 
Figure 7. Clusters in set 𝑆+ 
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Training sets, 𝑇𝑆1, 𝑇𝑆2, 𝑇𝑆3, 𝑇𝑆4, being the result of the pairwise combination of 
clusters from 𝑆+ and 𝑆− are shown in Figure 8.  Four classifiers, 𝐺1, 𝐺2, 𝐺3, 𝐺4, were 
built using these training sets by means of the CART algorithm. 

 

 
 

 
Figure 8. Pairwise combination of clusters 
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Figure 9. Sample with an unknown class label and its neighbours 
 
Below, we describe the results of the classification of a new sample 𝑋 =  [1.2, 5.8] 
with an unknown class label. Sample 𝑋 and its five nearest neighbours are shown in 
Figure 9. The classification conducted by 𝐺1 yielded the following predictions for 
the neighbours of 𝑋: [0, 0, 1, 1, 0]. The actual class labels are  [0, 0, 1, 1, 0]. So, 𝐺1 
has 100% accuracy. The other classifiers had the same 100% accuracy. Thus, in the 
example, all the classifiers have the same weight. 
 Classifiers 𝐺1, 𝐺2, 𝐺3, 𝐺4 classified sample 𝑋 as 0, 0, 1, 0 respectively. Therefore, 
by plurality voting, sample 𝑋  has been classified as belonging to class 0. 
 
4. Experiment 
 

This section presents the results of a computational experiment which was conducted 
to evaluate the performance of the presented ensemble classification method. In the 
experiment, the following data sets from the UCI Machine Learning Repository were 
used:  

 Banknote: a collection describing a banknote authentication problem [8]; 
 German: a data set widely used by researchers conducting tests related to 

credit scoring [9]; 

18



Ensemble Classification: Example and Python Implementation
 

 Haberman: a data set containing cases from a study conducted on the survival 
of patients who had undergone surgery for breast cancer [10]. 

The presented method was run on each data set 10 times for each considered classi-
fication algorithm: C4.5, CART and SVM. In each run, a data set was divided ran-
domly into a training subset and a test subset in proportions 0.8/0.2.  
 In the experiment, we considered 5 different values for the neighborhood size of 
a classified sample, which is denoted by 𝑀. 𝑀 was set at: 1, 2, 5, 10 and a half of the 
training set size.  
 The results of a computational experiment, i.e. the average classification accu-
racy, are presented in Table 1. 
 
Table 1. Classification accuracy [%] 
 

Data set 𝑴 
Classifier based on: 

C4.5  CART SVM 
Banknote 1 61.89 81.64 90.18 

2 66.18 82.98 91.02 

5 66.91 81.16 89.75 
10 66.61 82.69 90.15 

(𝐷𝑎𝑡𝑎 𝑠𝑒𝑡 𝑠𝑖𝑧𝑒)/2 67.21 81.78 90.40 
 

German 1 64.05 67.35 67.40 
2 66.05 65.95 69.50 
5 58.95 64.80 66.05 

10 54.15 66.65 62.15 

(𝐷𝑎𝑡𝑎 𝑠𝑒𝑡 𝑠𝑖𝑧𝑒)/2 64.10 65.40 53.95 
 

Haberman 1 60.32 68.71 72.58 

2 57.42 73.55 72.42 
5 53.87 69.19 70.00 
10 55.81 67.90 72.,10 

(𝐷𝑎𝑡𝑎 𝑠𝑒𝑡 𝑠𝑖𝑧𝑒)/2 62.74 70.65 72.90 
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 The results of the experiment show that the accuracy of the presented method 
strongly depends on the choice of an algorithm constructing classifiers. Also, clear 
differences in the accuracy can be observed between the runs on different data sets. 
 We observe that, the SVM based classifier almost always outperforms the other 
ones for all three data sets. When 𝑀 = 2, it is the best classifier for the Banknote and 
German data sets and the second best for the Haberman data set; in this case, the 
CART based classifier is slightly more accurate than the SVM based one. The C4.5 
based classifier always exhibits the worst performance. 
 The greatest differences in the classifier performance are observed for the Bank-
note data set, where the SVM based classifier shows the advantage of about 8% and 
25% over the CART and C4.5 based classifiers, respectively. 
 The parameter 𝑀 only slightly affects the results, though for the German data set the 
lower values of 𝑀, like 1 or 2, seem to lead to better results than greater values of 𝑀. 
 Figure 10 presents the comparison of the accuracy of the classifiers averaged over 
the considered values of parameter 𝑀. We can see that the classification was the 
easiest for the Banknote data set; in this data set each classifier produces better re-
sults than in the remaining datasets. 
 

 
Figure 10. Accuracy comparison of the C4.5, CART and SVM based classifiers 
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5. Summary 
 

Machine learning is an amazing field of science which we can benefit from in many 
ways, from banknote authentication in ATM, through credit risk calculation to cancer 
detection based on previous cases. It is obvious that this field of science will grow 
and will be put to research progressively more often and more intensively since our 
fast changing digital world is producing enormous amounts of data which can be 
used to deduce and present insightful knowledge, build smart systems and improve 
our life quality. 
 In this paper, the reader was introduced to the topic of ensemble classification. 
The ensemble classification method based on clustering has been presented along 
with its implementation in the Python programming language. The illustrative ex-
ample has been provided to better understand how the method proceeds. Also, some 
computational results have been reported. 
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