
Zeszyty Naukowe WWSI, No 21, Vol. 13 2019, s. 7-22
DOI: 10.26348/znwwsi.21.07

Ensemble Classification:
Example and Python Implementation

Piotr Andziak*, Ewa Figielska**

Warsaw School of Computer Science

Abstract

The paper presents an ensemble classification method based on clustering,
along with its implementation in the Python programming language. An il-
lustrative example showing the method behavior is provided, and the results
of a computational experiment performed on real life data sets are reported.

Keywords – Ensemble Classification, Clustering, Python

1. Introduction

Machine learning is a science area which aims to get computers to learn like humans
do or even better. The learning process is expected to improve over time, without
human interaction, fed by new data sets which may contain information about the
world, some observations or other kind of data used in the learning process [1].

* E-mail: p_andziak@poczta.wwsi.edu.pl
** E-mail: efigielska@poczta.wwsi.edu.pl

Manuscript received September 8, 2019.

7

Piotr Andziak, Ewa Figielska

Supervised learning and unsupervised learning are two of the machine learning
tasks [2].
 The objective of supervised learning is to discover a function mapping an input
to an output in a way learned from a training set. A training set consists of pairs:
desired output values for input values. An algorithm learning the mapping function
from the training dataset, in consecutive iterations is predicting the output which is
compared to the desired output. The iterations continue until the algorithm achieves
acceptable accuracy. The training set can be considered as a teacher supervising the
learning process.
 One of the subcategories of supervised learning is classification. The task of clas-
sification is to assign a new observation – a new input object – to one of the known,
predefined categories. Assignment is performed based on the independent variables
of the input object and the existing assignments learned from a training set.

Figure 1. Ensemble classification

To perform more accurate classification, a set of classification models can be used
instead of a single model and their outputs combined by a voting method. Various
ways of making a final output prediction exist in the literature, for example the voting
method may choose as the final prediction the one which has more than half of the

8

Ensemble Classification: Example and Python Implementation

votes (majority voting) or one with the greatest number of votes (plurality voting) or
it can determine the final prediction with regard to weights of classifiers depending
on their importance (weighted voting). The technique of combining the results from
a number of models is called ensemble learning. In Figure 1, the idea of the ensemble
classification is presented.
 Unsupervised learning, in oppose to supervised learning, does not use a train-
ing set. This process is expected to deduce and uncover an insightful structure or
distribution in a provided data set. There is no teacher/supervisor, there are no
wrong and correct answers. Algorithm is left to itself to learn the structure in data
and present it. One of the unsupervised learning techniques is clustering. The
objective of clustering is to discover useful groups in the input dataset, which
consist of similar, alike objects.
 The aim of this paper is to present the concept of ensemble classification as
well as to show how an ensemble classification algorithm can be implemented in
the Python programming language. As an example of an ensemble classification
algorithm we have chosen the method proposed by Xiao et al. in [3]. This method
builds a set of classifiers using training sets produced by a clustering algorithm.
Beside the details on the implementation of this method, we provide an illustra-
tive example and report some results of a computational experiment.

2. Ensemble classification based on clustering

In this section, we present a scheme of the ensemble classification algorithm
based on clustering and the details of its implementation in the Python language.
The results of the successive steps of the algorithm are shown using an illustra-
tive example. To make the explanation of the examples and implementation eas-
ier, a two-class classification problem is considered.
 The presented algorithm proceeds in six steps as shown in Figure 2. In the
first four steps, a classifier consisting of a set of single base classifiers is con-
structed using the training data set. In the last two steps, the class prediction for
a new sample is carried out.

9

Piotr Andziak, Ewa Figielska

Figure 2. The algorithm

In the next sub-sections, we explain the algorithm steps throughout their imple-
mentation, which is done in the Python 3.7 language. For the justification of the
algorithm the reader is referred to [3].

2.1. Clustering

For grouping data into clusters (Step 2 of the algorithm) the k-means algorithm [2]
is used. The calculations are performed for different numbers of clusters, 𝐾, ranging
from 2 to √|𝑆+| and to √|𝑆−| for sets 𝑆+ and 𝑆−, respectively. In order to assess
the clustering result, the validity function 𝑉𝐹(𝐾) is calculated:

𝑉𝐹(𝐾) = 𝐼𝑛𝑡𝑟𝑎 × 𝐼𝑛𝑡𝑒𝑟, (1)

where 𝐼𝑛𝑡𝑟𝑎 and 𝐼𝑛𝑡𝑒𝑟 are, respectively, an index of compactness of the clusters and
an index of separation between clusters.
 𝐼𝑛𝑡𝑟𝑎 represents the relative distance between each sample and the centroid of
a cluster, with respect to the maximal distance between all samples and the centroid,

10

Ensemble Classification: Example and Python Implementation

averaged over all clusters. 𝐼𝑛𝑡𝑒𝑟 considers the average distance between each pair
of cluster centroids and the average distance of each cluster centroid to the center of
all cluster centroids. Formally, the values of 𝐼𝑛𝑡𝑟𝑎 and 𝐼𝑛𝑡𝑒𝑟 are given by the fol-
lowing formulas [3]:

𝐼𝑛𝑡𝑟𝑎 =
1

𝐾
∑

∑ |𝑋𝑖
𝑘−𝑟𝑘|

𝑚𝑘
𝑖=1

𝑚𝑘 max
𝑗∈[1,…,𝑚𝑘]

|𝑋𝑗
𝑘−𝑟𝑘|

𝐾
𝑘=1 , (2)

𝐼𝑛𝑡𝑒𝑟 = exp (−
2 ∑ |𝑟𝑖−𝑟𝑗|1≤𝑖<𝑗≤𝐾 (𝐾(𝐾−1))⁄

∑ |𝑟𝑘−𝑟|𝐾
𝑘=1 𝐾⁄

), (3)

where:

𝑚𝑘 is the number of samples in cluster of index 𝑘,
𝑋𝑖

𝑘 denotes sample 𝑖 belonging to cluster 𝑘,
𝑟𝑘 is the centroid of cluster 𝑘,
𝑟 is the center of all the cluster centroids.

The values of 𝐼𝑛𝑡𝑟𝑎 and 𝐼𝑛𝑡𝑒𝑟 range from 0 to 1.
 Smaller values of 𝐼𝑛𝑡𝑟𝑎 and 𝐼𝑛𝑡𝑒𝑟 indicate better compactness and separation,
respectively. So, the best clustering result is the one with the minimal value of
𝑉𝑃(𝐾).
 In Figure 3, the implementation of the clustering function is shown. Parameter
𝑠 stores the data set containing samples with either 1 or 0 class label. During the
execution of the program, the clustering function is called twice, once with 𝑠 con-
taining data from set 𝑆+ and once with data from 𝑆−. The function successively
checks the values of 𝑉𝑃(𝐾) for every 𝐾 bounded by 𝑘_𝑚𝑖𝑛 and 𝑘_𝑚𝑎𝑥 (which are
equal to 2 and √|𝑆|, respectively). It chooses and returns the number of clusters, 𝐾,
and the clusters themselves (in dictionary variable 𝑘_𝑜𝑝𝑡) for which 𝑉𝑃(𝐾) has the
smallest value.

11

Piotr Andziak, Ewa Figielska

Figure 3. Clustering function

2.2. Multiple classifier construction

After grouping data into clusters, the training subsets for building classifiers are con-
structed by pairwise combination of clusters with different classes. For constructing

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

def make_clusters(k_min, k_max, s):

 k_opt = {'VF': 1, 'K': 0}

 for K in range(k_min, k_max + 1, 1): #checking different numbers of clusters

 kmeans = KMeans(n_clusters=K, random_state=0).fit(s) #calling k-means alg.

 cluster_map = pandas.DataFrame()

 cluster_map['data_index'] = s.index.values

 cluster_map['cluster'] = numpy.array(kmeans.labels_).transpose()

 centers = kmeans.cluster_centers_

 intra_k = 0

 for k in range(0, K, 1): #calculating intra

 dist_sum = 0

 dist_max = 0

 samples = cluster_map[cluster_map.cluster == k].reset_index(drop=True)

__

 for i in range(0, len(samples.index), 1):

 dist = abs(distance.euclidean(s.loc[samples.loc[i,

 'data_index'], :].values, centers[k]))

 dist_sum += dist

 if dist > dist_max:

 dist_max = dist

 if dist_max > 0:

 intra_k += dist_sum / (len(samples.index) * dist_max)

 intra = intra_k / K

 r_dist_sum = 0

 for x in itertools.product(centers, centers): #calculating inter

 if not (x[0] == x[1]).all():

 r_dist_sum += abs(distance.euclidean(x[0], x[1]))

 D = 2 * r_dist_sum / (K * (K - 1))

 r0 = numpy.mean(centers)

 r_to_r0 = 0

 for r in centers:

 r_to_r0 += abs(distance.euclidean(r, r0))

 b = r_to_r0 / K

 inter = math.exp(-D / b)

 vf = intra * inter

 if k_opt['VF'] > vf: #uppading clustering results

 k_opt['VF'] = vf

 k_opt['K'] = K

 k_opt['clusters'] = cluster_map

 k_opt['centers'] = centers

 return k_opt _________________________________

12

Ensemble Classification: Example and Python Implementation

classifiers three algorithms are selected: C4.5, CART [2] and SVM [4]. To construct
C4.5 trees the implementation from Chefboost library [5] was used, while CART and
SVM were sourced from Anaconda library [6].
 Figure 4 shows the function creating a multiple classifier. It takes as the parame-
ters the numbers of clusters 𝐾+ and 𝐾− in sets 𝑆+ and 𝑆− and sets 𝑆+, 𝑆− themselves
(parameters 𝑘_𝑝_𝑜𝑝𝑡, 𝑘_𝑛_𝑜𝑝𝑡, 𝑠_𝑝𝑜𝑠, 𝑠_𝑛𝑒𝑔, respectively). The information about
the classification algorithm to be used is passed to the function as parameter 𝑎𝑙𝑔.
The constructed training sets 𝑇𝑆𝑗 and classifiers 𝐺𝑗 (𝑗 = 1, … , 𝐾+ ∙ 𝐾−) are stored
in lists 𝑡𝑠 and 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠, respectively, and returned by the function.

Figure 4. Multiple classifier construction

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

def make_classifiers(k_p_opt, k_n_opt, s_pos, s_neg, alg):

 clasifiers = []

 ts = []

 gnn = 0

 for i in range(0, k_p_opt['K'], 1):#performing pairwise combination

 for k in range(0, k_n_opt['K'], 1):

 tsj = pd.concat([s_pos.loc[s_pos['cluster'] == i],

_____________________________s_neg.loc[s_neg['cluster'] == k]], axis=0,

 ignore_index=False)

 ts.append(tsj)

 #constructing classifier

 if alg == 1: # c45

 config = {'algorithm': 'C4.5'}

 gn = chef.fit(tsj.loc[:, tsj.drop(['cluster'],

___________________ axis=1).columns], config)

 chef.save_model(gn, "model"+str(gnn)+".pkl")

 gnn += 1

 elif alg == 2: # cart

 tree = DecisionTreeClassifier()

 gn = tree.fit(tsj.loc[:, tsj.drop(['Decision',

___________________ 'cluster'], axis=1).columns], tsj['Decision'])

 elif alg == 3: # svm

 svmc = svm.LinearSVC(C=1.0, max_iter=1000000)

 gn = svmc.fit(tsj.loc[:, tsj.drop(['Decision',

___________________ 'cluster'], axis=1).columns], tsj['Decision'])

 clasifiers.append(gn)

 return ts, classifiers

13

Piotr Andziak, Ewa Figielska

2.3. Prediction of a class label

In ensemble classification, to determine the class label for a new sample 𝑋, the
predictions from the multiple models are combined. To achieve this, first, the weight,
𝑊𝑗, of each classifier 𝐺𝑗 is calculated on the basis of its accuracy in the neighborhood
of sample 𝑋. Then, classifiers with the highest weights are selected and their predic-
tions are combined in a plurality voting.

Figure 5. Prediction of a class label

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

for i in range(0, len(dataset_test.index), 1): #classifying each test sample

 Wj = []

 accuracy = []

 Xc = dataset_test.loc[i, 'Decision']

 X = dataset_test.loc[i,dataset_test.drop(['Decision'],axis=1).columns]

 X = pd.DataFrame(X.values.tolist(), X.index).transpose()

 for j, g in enumerate(classifiers): #computing accuracy of classifiers

 correct = 0 #in the neighborhood of a test sample

 tss = ts[j].reset_index(drop=True)

 neighbors = len(tss) // 2 # M

 nn = NearestNeighbors(n_neighbors=neighbors)

 nn.fit(tss.loc[:,tss.drop(['Decision','cluster'],axis=1).columns])

 ngh = nn.kneighbors(X, return_distance=False)

 txx=tss.loc[ngh[0],tss.drop(['Decision','cluster'],axis=1).columns]

 result = {}

 for index, row in txx.iterrows():

 vals = (row.to_list()

 if alg == 1: # c45

 g = chef.load_model("model"+str(j)+".pkl")

 result[index] = chef.predict(g, vals)

 elif alg == 2: # cart

 result[index] = g.predict([vals])[0]

 elif alg == 3: # svm

 result[index] = g.predict([vals])[0]

 c = tss.loc[ngh[0], 'Decision']

 for index, row in result.items():

 if str(c[index]) == str(row):

 correct += 1

 accuracy.insert(j, (correct * 100) / len(result))

 for j, a in enumerate(accuracy): #calculating Wj for each classifier

 if sum(accuracy) == 0:

 Wj.insert(j, 0)

 else:

 Wj.insert(j, '{:.2f}'.format(a / sum(accuracy)))

 max_value = max(Wj)

 maxWj = [i for i, x in enumerate(Wj) if x == max_value]

 result = list()

 for indexvalue in maxWj: #classifying sample with classifiers with

 if alg == 1: # c45 highest Wj

 classifiers[indexvalue] = chef.load_model("model" + str(indexvalue)+".pkl")

 result.append(chef.predict(classifiers[indexvalue], X.values.tolist()[0]))

 elif alg == 2: #cart

 result.append(classifiers[indexvalue].predict(X)[0])

 elif alg == 3: #svm

 result.append(classifiers[indexvalue].predict(X)[0])

 try:

 result = mode(result)

 except StatisticsError: # if equal number of votes

 result = random.choice(result)

14

Ensemble Classification: Example and Python Implementation

In the implementation shown in Figure 5, in the first loop (lines 7-29), the accuracies
of the classifiers in the neighborhood of sample 𝑋 are determined. For discovering
the nearest neighbors of sample 𝑋 the 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 class from 𝑠𝑐𝑖𝑘𝑖𝑡 −

𝑙𝑒𝑎𝑟𝑛 Python library [7] is used. The neighborhood size is set in line 10 (here, to the
half of the size of the training set), in line 11 an object of the 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
class is created, which is then filled with all the data samples, from which a prede-
termined number of neighbors is selected (lines 12-14). The classification of the
neighbor samples by means of the indicated classification model is carried out in
lines 16-24. The accuracy of each classifier is equal to the ratio of the number of
samples correctly classified to the total number of the nearest neighbors (line 29).
The weight of a classifier is calculated as the ratio of its accuracy to the sum of the
accuracies of all the classifiers (line 34). Sample 𝑋 is given a class label which is
chosen by plurality voting from among the results of the classifiers with the greatest
weights (lines 35-49).

3. Illustrative example

Figure 6. Data set

15

Piotr Andziak, Ewa Figielska

To test the implementation and visualize the execution of the algorithm, a data set
was created which consists of 20 records described by 3 attributes, the last attribute
has a binary nature and decides on the class of a sample. The data set is shown in
Figure 6.
 Before k-means clustering can be applied, the data set is split into two subsets 𝑆+
and 𝑆− according to a class label. The data from each subset are grouped into clus-
ters. Let’s consider grouping for the positive subset 𝑆+.
 Clustering function applies k-means clustering and calculates validity function
𝑉𝐹(𝐾) for 𝐾 = 2 and 3. The obtained results are as follows:
for 𝐾 = 2, 𝑖𝑛𝑡𝑟𝑎 = 0.68, 𝑖𝑛𝑡𝑒𝑟 = 0.36 and 𝑉𝐹(2) = 0.24,
for K = 3, 𝑖𝑛𝑡𝑟𝑎 = 0.81, 𝑖𝑛𝑡𝑒𝑟 = 0.40 and 𝑉𝐹(3) = 0.32
 Because 𝑉𝐹(𝐾) has a smaller value for 𝐾 = 2 than for 𝐾 = 3, 𝑆+ is split into
two clusters as shown in Figure 7. The same procedure is carried out for negative
subset 𝑆−, for which the best setting is also 𝐾 = 2.

Figure 7. Clusters in set 𝑆+

16

Ensemble Classification: Example and Python Implementation

Training sets, 𝑇𝑆1, 𝑇𝑆2, 𝑇𝑆3, 𝑇𝑆4, being the result of the pairwise combination of
clusters from 𝑆+ and 𝑆− are shown in Figure 8. Four classifiers, 𝐺1, 𝐺2, 𝐺3, 𝐺4, were
built using these training sets by means of the CART algorithm.

Figure 8. Pairwise combination of clusters

17

Piotr Andziak, Ewa Figielska

Figure 9. Sample with an unknown class label and its neighbours

Below, we describe the results of the classification of a new sample 𝑋 = [1.2, 5.8]
with an unknown class label. Sample 𝑋 and its five nearest neighbours are shown in
Figure 9. The classification conducted by 𝐺1 yielded the following predictions for
the neighbours of 𝑋: [0, 0, 1, 1, 0]. The actual class labels are [0, 0, 1, 1, 0]. So, 𝐺1
has 100% accuracy. The other classifiers had the same 100% accuracy. Thus, in the
example, all the classifiers have the same weight.
 Classifiers 𝐺1, 𝐺2, 𝐺3, 𝐺4 classified sample 𝑋 as 0, 0, 1, 0 respectively. Therefore,
by plurality voting, sample 𝑋 has been classified as belonging to class 0.

4. Experiment

This section presents the results of a computational experiment which was conducted
to evaluate the performance of the presented ensemble classification method. In the
experiment, the following data sets from the UCI Machine Learning Repository were
used:

 Banknote: a collection describing a banknote authentication problem [8];
 German: a data set widely used by researchers conducting tests related to

credit scoring [9];

18

Ensemble Classification: Example and Python Implementation

 Haberman: a data set containing cases from a study conducted on the survival
of patients who had undergone surgery for breast cancer [10].

The presented method was run on each data set 10 times for each considered classi-
fication algorithm: C4.5, CART and SVM. In each run, a data set was divided ran-
domly into a training subset and a test subset in proportions 0.8/0.2.
 In the experiment, we considered 5 different values for the neighborhood size of
a classified sample, which is denoted by 𝑀. 𝑀 was set at: 1, 2, 5, 10 and a half of the
training set size.
 The results of a computational experiment, i.e. the average classification accu-
racy, are presented in Table 1.

Table 1. Classification accuracy [%]

Data set 𝑴
Classifier based on:

C4.5 CART SVM
Banknote 1 61.89 81.64 90.18

2 66.18 82.98 91.02

5 66.91 81.16 89.75
10 66.61 82.69 90.15

(𝐷𝑎𝑡𝑎 𝑠𝑒𝑡 𝑠𝑖𝑧𝑒)/2 67.21 81.78 90.40

German 1 64.05 67.35 67.40
2 66.05 65.95 69.50
5 58.95 64.80 66.05

10 54.15 66.65 62.15

(𝐷𝑎𝑡𝑎 𝑠𝑒𝑡 𝑠𝑖𝑧𝑒)/2 64.10 65.40 53.95

Haberman 1 60.32 68.71 72.58

2 57.42 73.55 72.42
5 53.87 69.19 70.00
10 55.81 67.90 72.,10

(𝐷𝑎𝑡𝑎 𝑠𝑒𝑡 𝑠𝑖𝑧𝑒)/2 62.74 70.65 72.90

19

Piotr Andziak, Ewa Figielska

 The results of the experiment show that the accuracy of the presented method
strongly depends on the choice of an algorithm constructing classifiers. Also, clear
differences in the accuracy can be observed between the runs on different data sets.
 We observe that, the SVM based classifier almost always outperforms the other
ones for all three data sets. When 𝑀 = 2, it is the best classifier for the Banknote and
German data sets and the second best for the Haberman data set; in this case, the
CART based classifier is slightly more accurate than the SVM based one. The C4.5
based classifier always exhibits the worst performance.
 The greatest differences in the classifier performance are observed for the Bank-
note data set, where the SVM based classifier shows the advantage of about 8% and
25% over the CART and C4.5 based classifiers, respectively.
 The parameter 𝑀 only slightly affects the results, though for the German data set the
lower values of 𝑀, like 1 or 2, seem to lead to better results than greater values of 𝑀.
 Figure 10 presents the comparison of the accuracy of the classifiers averaged over
the considered values of parameter 𝑀. We can see that the classification was the
easiest for the Banknote data set; in this data set each classifier produces better re-
sults than in the remaining datasets.

Figure 10. Accuracy comparison of the C4.5, CART and SVM based classifiers

65,76
61,46

58,03

82,05

66,03
70,00

90,30

63,81

72,00

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

banknote german haberman

C4.5 CART SVM

20

Ensemble Classification: Example and Python Implementation

5. Summary

Machine learning is an amazing field of science which we can benefit from in many
ways, from banknote authentication in ATM, through credit risk calculation to cancer
detection based on previous cases. It is obvious that this field of science will grow
and will be put to research progressively more often and more intensively since our
fast changing digital world is producing enormous amounts of data which can be
used to deduce and present insightful knowledge, build smart systems and improve
our life quality.
 In this paper, the reader was introduced to the topic of ensemble classification.
The ensemble classification method based on clustering has been presented along
with its implementation in the Python programming language. The illustrative ex-
ample has been provided to better understand how the method proceeds. Also, some
computational results have been reported.

References

[1] D. Faggella, What is Machine Learning, https://emerj.com/ai-glossary-
terms/what-is-machine-learning/ [20 August 2019].

[2] D.T. Larose, Discovering knowledge in data, New Jersey: John Wiley &
Sons, Inc., 2005.

[3] H. Xiao, Z. Xiao, Y. Wang, Ensemble classification based on supervised
clustering for credit scoring, Applied Soft Computing 43, p. 73–86, 2016.

[4] R. Gandhi, Support Vector Machine — Introduction to Machine Learning
Algorithms, https://towardsdatascience.com/support-vector-machine-in-
troduction-to-machine-learning-algorithms-934a444fca47 [20 August
2019].

[5] S.I. Serengil, Chefboost, https://github.com/serengil/chefboost [20 August
2019].

[6] Anaconda, https://www.anaconda.com/ [20 August 2019].
[7] Scikit-learn, https://scikit-learn.org/ [20 August 2019].

21

Piotr Andziak, Ewa Figielska

[8] V. Lohweg, Banknote Authentication Data Set, University of Applied Sci-
ences, Ostwestfalen-Lippe,
http://archive.ics.uci.edu/ml/datasets/banknote+authentication
[20 August 2019].

[9] H. Hofmann, German Credit Data Set, University of Hamburg,
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
[20 August 2019].

[10] T.-S. Lim, Haberman’s Survival Data Set, University of Chicago’s
Billings Hospital,
http://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival [20 Au-
gust 2019].

22

https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

