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Abstract
Generalized characteristic function games are a variation of characteristic func-
tion games, in which the value of a coalition depends not only on the identities
of its members, but also on the order in which the coalition is formed. This class
of games is a useful abstraction for a number of realistic settings and economic
situations, such as modeling relationships in social networks. To date, two main
extensions of the Shapley value have been proposed for generalized characteristic
function games: the Nowak-Radzik value and the Sánchez-Bergantiños value. In
this context, the present article studies generalized characteristic function games
from the point of view of implementation and computation. Specifically, the ar-
ticle presents a non-cooperative mechanism that implements the Nowak-Radzik
value in Subgame-Perfect Nash Equilibria in expectation.
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1 Introduction

Coalitional games are an important model for many realistic economic situations that capture
the ability of players to take joint, coordinated actions. Typically, a coalitional game model
specifies payoffs attainable by various subsets (or coalitions) of players cooperating within the
game. Given these payoffs, fundamental game-theoretic research questions concerning coali-
tional games include: (i) Which coalition will actually form? (ii) How should the coalitional
payoff be distributed among coalition members? Moreover, assuming that desirable coalitions
and payoff distribution methods exist: (iii) How can we create a mechanism that implements
a specific solution in an environment of self-interested players? Coalitional games also raise
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many important questions from the computer-science perspective, key among them being: (iv)
How to represent games compactly? and (v) How to efficiently compute their solutions given
such compact representations [1]. This article addresses the third question for coalitional games
in the generalized characteristic function form as introduced by Nowak and Radzik [2]. This
class of games generalizes characteristic function games with transferable utility by distinguish-
ing between different orders in which players create coalitions. Thus, in this model, the value
of a coalition depends not only on its members, but also on the order in which those members
joined the coalition.

Generalized characteristic function form games naturally capture a number of real-world
situations. Consider, for example, a search on a social network where we need to answer a
question that only a few nodes can answer, and the question is propagated through referrals
along the connections of each node. This was the case, for instance, with the recent TAG
challenge [3, 4], where photos of five suspects were announced on a particular date, along with
the name of the city where each criminal was located, and the challenge was to take photos of
as many suspects as possible within 12 hours using referrals on social networks. In such cases,
the order in which nodes are added to the search influences the time required to find an answer
(e.g., the sooner the nodes with more connections join, the faster the search becomes). As a
second example, consider the cost-allocation problem studied by Sánchez and Bergantiños [5],
where a group of universities participating in a joint research project invite a foreign expert for
a visit. The budget of such a visit will depend on the planned route, i.e., the sequence in which
the universities are to host the researcher.

Clearly, situations such as the above cannot be captured within a conventional coalitional
game model (i.e., a game in characteristic function form), where the value of a coalition depends
solely on the identity of its members, without considering the order in which the members have
joined it. Consequently, a growing body of work has considered generalized characteristic
function games. In this context, a number of researchers have focused on the issue of fair
payoff division. The most well-known fair payoff division concept in coalitional games is the
Shapley value [6]. The basic idea is that ai’s payoff should be equal to ai’s average marginal
contribution, taken over all possible ways in which players could join the game (and contribute
to the creation of each coalition’s value). For instance, in the game of three players, there
are altogether 3! ways in which players could join the game: (i) a1, a2, a3, (ii) a1, a3, a2, (iii)
a2, a1, a3, (iv) a3, a1, a2, (v) a2, a3, a1, and (vi) a3, a2, a1. As such, there are 3! corresponding
marginal contributions of a1: in (i) and (ii) a1 joins first (i.e., a1 contributes twice to the empty
set); in (iii) a1 joins after a2 (i.e., a1 contributes once to ta2u); in (iv) a1 joins after a3 (i.e.,
a1 contributes once to ta3u); finally in (v) and (vi) a1 joins last (i.e., a1 contribute twice to
ta2, a3u). The average of all these marginal contributions is the Shapley value of a1.

There are two main extensions of the Shapley value to generalized characteristic function
games. The first was proposed by Nowak and Radzik [2] (which we refer to as the NR value),
while the second was introduced by Sánchez and Bergantiños [7] (which we refer to as the
SB value). The difference between these values can be seen in cases (v) and (vi) of the above
3-agent example. In particular, if v denotes the characteristic function, and vg denotes the
generalized characteristic function, then:
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• With the Shapley value, a1 contributes twice the difference between vpta2, a3uq

and vpta1, a2, a3uq.

• With the NR value, a1 contributes once the difference between vgpa2, a3q

and vgpa2, a3, a1q, and contributes once the difference between vgpa3, a2q

and vgpa3, a2, a1q.

• With the SB value, a1 contributes twice the difference between the average value
of a coalition consisting of a2, a3 and of a coalition consisting of a1, a2, a3,
i.e., difference between vgpa2,a3q`vgpa3,a2q

2 and
vgpa1,a2,a3q`vgpa1,a3,a2q`vgpa2,a1,a3q`vgpa2,a3,a1q`vgpa3,a1,a2q`vgpa3,a2,a1q

6 .

One of the interesting applications of those two extensions is the recent body of literature
that uses game theoretic solution concepts to compute centralities of nodes in networks [8, 9,
10]. In summary, by defining a coalitional game with players being nodes of a network, and
then computing a solution for such a game, it is possible to obtain a measure of importance for
individual nodes. In this context, both the NR and SB values were used by del Pozo et al. [8] to
study the centrality of nodes in directed social networks. These networks have recently raised
increasing attention as they can be used to model a variety of situations, ranging from terrorist
groups [11] to the spread of contagious diseases [12]. The crucial characteristics of these real-
life network applications is that a relationship between two nodes connected by an edge is
asymmetric, i.e., the edge is directed. Consequently, in many cases, the worth of a coalition
in a game defined over such a network should depend not only on its members but also on the
order in which they were incorporated to this coalition. Del Pozo et al. took this into account by
defining a generalized characteristic function game over a network (instead of a characteristic
function game) and considering both NR and SB values as centrality measures.

Although there have been a number of game-theoretic works (including the NR and SB val-
ues) on generalized characteristic function games, the implementational aspects of these games
have not been yet studied. This research challenge can be summarized as follows. Given a
desired solution to a coalitional game (such as the Shapley value), the issue of implementation
deals with creating a set of rules (a mechanism) that incentivizes self-interested players to reach
the desired solution as a result of equilibrium behavior. Although there exist various mecha-
nisms implementing the Shapley value and some of its various extensions, no mechanism for
coalitional games with ordered coalitions has been proposed to date.

Against this background, in this article we present an implementation of the NR value
and the SB value. We build upon the Simple Demand Commitment Games by Dasgupta and
Chiu [13] in which the Shapley value is implemented in expectations. We call our two re-
finements for the generalized characteristic function games the Ordered Demand Commitment
Games. They implement both the NR value and the SB value in expectations.

The remainder of the article is organized as follows. In Section 2, we discuss the related
literature. Section 3 provides notation and formal definitions of the Shapley value and its two
extensions to generalized characteristic function games (i.e., the NR and SB values). In Section
4 we describe our mechanisms for implementing both values. Conclusions and possible future
work follow.
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2 Related Work

The issue of implementing the Shapley value has been studied in the literature by a number of
authors. Gul [14] introduced a model of a transferable-utility economy where two players make
bilateral offers at random meetings. Assuming that the game is strictly convex, with the time
interval between meetings becoming arbitrarily small, the Shapley value emerges as the limit for
the expected payoff of each player in a Stationary Subgame-Perfect Nash Equilibrium (SSPNE).
This result holds also for strictly super-additive games but only for the SSPNE reached by
an immediate agreement ([14, 15]). A simplified mechanism of this kind was introduced by
Evans [16].

Two alternative mechanisms were later on introduced by Dasgupta and Chiu [13] and by
Pérez-Castrillo and Wettstein [17]. Dasgupta and Chiu [13] proposed a mechanism called
the Simple Demand Commitment Game (SDCG). Assuming that the characteristic function
is strictly convex, the mechanism starts by randomly choosing an order in which players are
allowed to move. Then, the first player in the chosen order makes a move which may or may
not end the game. If the game does not end, then the second player in the order makes another
move (which again may or may not end the game), and so on. The move that each player ai
makes is to select one of the following two options: (1) demand a payoff di that ai will accept in
return for joining any coalition, or (2) create a coalition consisting of ai and a (possibly empty)
subset of his choice out of the players that precede him in the order, which ends the game and
forces every non-member of that coalition to form a singleton coalition.

The above mechanism by Dasgupta and Chiu implements the Shapley value in expected
terms. To avoid this limitation, Pérez-Castrillo and Wettstein [17] proposed an alternative mech-
anism by which the Shapley value emerges in all equilibria. Furthermore, compared to Dasgupta
and Chiu’s mechanism, which requires strict convexity, Pérez-Castrillo and Wettstein’s mech-
anism requires the characteristic function is zero-monotonic, which is a weaker condition. In
more detail, the mechanim by Pérez-Castrillo and Wettstein involves three steps. In Step 1 play-
ers bid by offering each other transfers and the stake is to become a proposer, that is to have the
sole right to divide the payoff from the game. In Step 2, the winner (i.e. the highest net bidder)
pays the transfers promised to other players, and then proposes the division of the game’s pay-
off among the players in the game. In Step 3, these players either accept or reject the proposal.
If the offer is rejected, the proposer is obliged to leave the mechanism and form a singleton
coalition. The remaining players follow the same procedure but for the now-smaller game. In
essence, this mechanism hinges upon the balanced contribution property of the Shapley value,
which basically states that any player is worth the same to any other player in the game. More
formally:

φipN, vq ´ φipN´j , vq “ φjpN, vq ´ φjpN´i, vq, (1)

where φipN, vq denotes the Shapley value of player ai in the coalitional game with player
set N and value function v, while, φipN´i, vq denotes the Shapley value of player ai in the
coalitional game with player set Nztaiu and the same value function v. Pérez-Castrillo and
Wettstein showed how this property allows for the construction of a mechanism in which the
Shapley value emerges as a result of equilibrium behavior. Unfortunately, it can be very easily
demonstrated the balanced contribution property is not met by the Nowak and Radzik value.
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A number of follow-up works have built upon Pérez-Castrillo and Wettstein’s mechanism.
In particular, the version of the mechanism that implements the Ordinal Shapley value for n “ 3
was proposed by Pérez-Castrillo and Wettstein [18]. To implement the Owen value, Vidal-Puga
and Bergantiños [19] added a fourth step—a bidding phase to become leaders of a priori given
coalitions. A different fourth step was proposed by Ju and Wettstein [20] in order to implement
the extension of the Shapley value to games with externalities by Pham do and Norde [21]. A
similar approach followed in Macho-Stadler et al. [22, 23]. Van den Brink and Funaki [24]
introduced a discounting parameter to implement the discounted Shapley value.

Finally, we mention other extensions of the Shapley value for generalized characteristic
function games developed after the Nowak-Radzik and Sánchez-Bergantiños values. In par-
ticular, a family of weighted Shapley values was studied by Bergantiños and Sánchez [25].
Furthermore, a parametric family of values (including both the Nowak-Radzik and Sánchez-
Bergantiños values) was analyzed in a network context by del Pozo et al. [8].

3 Preliminaries

We begin by describing the basic notation (Appendix B provides a comprehensive summary).
Let N “ ta1, . . . , anu be the set of players in a coalitional game. Denote by 2N the set of all
subsets of N . An element of 2N is a coalition. An arbitrary coalition will often be denoted
C or D. The coalition involving all players in the game will be called the grand coalition. A
characteristic function v is a mapping v : 2N Ñ R, i.e., it assigns to every coalition C Ď N a
real number representing its value. We will assume that vpHq “ 0. A game in characteristic
function form is a pair pN, vq. When there is no risk of confusion, we will sometimes simply
write v instead of pN, vq.

For each coalition C P 2NztHu, denote by ΠpCq the set of all possible permutations of the
players in C. Any such permutation will be called an ordered coalition. An arbitrary ordered
coalition will often be denoted as T or S, while the set of all such coalitions will be denoted T .
That is, T “

Ť

CP2N ΠpCq. A generalized characteristic function vg is a mapping vg : T Ñ R,
where it is assumed that vgpHq “ 0. A game in generalized characteristic function form is a
tuple pN, vgq, and will sometimes be denoted by vg alone. For some coalition D Ď N we
will denote by T´D the set of all ordered coalitions not containing players from D, formally:
T´D “

Ť

CP2NzD ΠpCq. Sometimes, ai will be used implicitely as paiq.
We will sometimes refer to the members of an ordered coalition T using their names, e.g.,

write T “ pa5, a2, a3q, while other times we may refer to them using a lower case of the same
letter: T “ pt1, . . . , t|T |q, meaning that ti is the ith agent in T . Furthermore, given two disjoint
ordered coalitions, T “ pt1, . . . , t|T |q P T and S “ ps1, . . . , s|S|q P T , we write pT, Sqk

to denote the ordered coalition that results from inserting S at the kth position in T . That is,
pT, Sqk “ pt1, . . . , tk´1, s1, . . . , s|S|, tk, . . . , t|T |q. With a slight abuse of notation, we write
pT, aiq

k to denote pT, paiqqk. Furthermore, we write pai, T q, and pT, aiq, to denote the ordered
coalition that results from inserting ai to T as the first player, and the last player, respectively.

For every coalition C Ď N and every permutation π “ tπ1, π2, . . . , π|π|u P ΠpCq, we
introduce a function invpπq that returns the inverse of π. Formally, inv :

Ť

CĎN ΠpCq Ñ
Ť

CĎN ΠpCq is given by: invpπq “ pπ|π|, . . . , π2, π1q. For instance, for π “ pa3, a1, a5, a6q,
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we have invpπq “ pa6, a5, a1, a3q. Furthermore, given a permutation π P ΠpNq and a coalition
C Ď N , with a slight abuse of notation we will denote by πpCq the ordered coalition consisting
of all the players in C ordered according to π, i.e., it is the ordered coalition that results after
removing from π every player in NzC. For example, given π “ pa2, a1, a4, a3q, and C “

ta1, a2, a3u, we have πpCq “ pa2, a1, a3q. Moreover, given a generalized game pN, vgq, and
a permutation π P ΠpNq, we denote by pN, vg,πq the characteristic function game in which,
@C Ď N :

vg,πpCq “ vgpπpCqq. (2)

For any pN, vgq, we also introduce the characteristic function game pN, v̄gq which we call the
average game of pN, vgq. In this game, for @C Ď N :

v̄gpCq “
1

|ΠpCq|

ÿ

TPΠpCq

vgpπpCqq. (3)

We will call v̄g , the average characteristic function of pN, vgq.
Next, we extend the notion of a subset to ordered sets.

Definition 1. For any two ordered coalitions S “ ps1, . . . , s|S|q P T and T “ pt1, . . . , t|T |q P
T , we say that T is a subset of S, and write T tĎS, if and only if T is a subsequence of S, i.e.,
the following two conditions hold:

• Every members of T is a member of S. More formally:

@ti P T, Dsk P S : sk “ ti.

• For any two players, ti, tj P T , if ti appears before tj in T , then ti also appears before
tj in S. More formally:

@ti, tj P T : i ă j, Dsk, sw P S : k ă w and sk “ ti and sw “ tj .

Following convention, we say that T is a strict subset of S, and write T tĂS (instead of
T tĎS), if the above two conditions are met, and T ‰ S.

Now, we are ready to introduce the following definitions:

Definition 2. A characteristic function game pN, vq is said to be (strictly) zero monotonic if,
for all ai P N and C Ď Nztaiu, the following holds:

vpCq ` vptaiuqpăq ď vpC Y taiuq.

Definition 3. A generalized characteristic function game pN, vgq is said to be (strictly) zero
monotonic if, for all C Ď N , for all ai P C, and for all T P ΠpC´iq

vgpT q ` vgppaiqqpăq ď vgppT, aiqq.
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A stricter condition than zero-monotonicity is convexity:

Definition 4. A characteristic function game pN, vq is said to be (strictly) convex if, for every
two coalitions C,D : D Ă C and for every ai P NzC, the following holds:

vpC Y taiuq ´ vpCqpąq ě vpD Y taiuq ´ vpDq.

We extend the notion of convexity to the generalized characteristic function games as fol-
lows:

Definition 5. A generalized characteristic function game pN, vgq is said to be (strictly) convex
if, for every two ordered coalitions S, T : T tĂ S and for every ai P NzS, we have:

vgppS, aiq
sq ´ vgpSqpąq ě vgppT, aiq

tq ´ vgpT q,

whenever pT, aiqt is a subset of pS, aiqs. More formally, the inequality holds for every t P
t1, . . . , |T | ` 1u, s P t1, . . . , |S| ` 1u : pT, aiq

t
tĂ pS, aiq

s.

Now, we briefly describe the Shapley value for characteristic function games, and then
present its extensions to generalized characteristic function games. The Shapley value was
proposed as a normative scheme for dividing the value of the game fairly among the players.
In more detail, the Shapley value of a player ai P N , denoted φipN, vq, is ai’s share of the
grand coalition’s payoff, which is computed as the average marginal contribution of that player
over all possible joining orders (assuming that the agents have joined the game sequentially, one
agent at a time). Formally:

φipN, vq “
1

|N |!

ÿ

πPΠpNq

∆vpCÐÝπi , aiq, (4)

where ∆vpCÐÝπi , aiq is the marginal contribution of a player ai to a coalition CÐÝπi consisting of
all the players that are in permutation π before ai. Formally:

∆vpCÐÝπi , aiq “ vpCÐÝπi Y taiuq ´ vpCÐÝπi q. (5)

Importantly, as visible from Equation (4), if π P ΠpNq was selected uniformly at random, the
Shapley value of player ai would be the expected marginal contribution of ai to CÐÝπi . That is,
φipN, vq “ Er∆CÐÝπi

,is, where Er¨s is the expectation operator.

It is possible to rewrite Equation (4) as follows:

φipN, vq “
ÿ

πPNztaiu

p|N | ´ |C| ´ 1q!p|C|!q

|N |!
vpC Y taiuq ´ vpCq. (6)

This is more computationally efficient than Equation (4), because the sum is over coalitions,
not permutations. When there is no risk of confusion, instead of φipN, vq, we will write φipvq
or φi for brevity. This also concerns the extensions of the Shapley value that will be presented
later on in this section.
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The Shapley value is “fair” in the sense that it is the unique solution that has the following
axioms:

Symmetry: The payoffs do not depend on the players’ names. That is, φpπpvqq “
πpφqpvq for every game v and permutation π P ΠpNq.

Null Player:
The players that make no contribution should receive nothing. In other
words, we have

`

@C Ď N,∆vpCÐÝπi , aiq “ 0
˘

ñ
`

φipNq “ 0
˘

.

Efficiency:
The entire payoff of the grand coalition should be distributed among its
members. That is,

ř

aiPN
φipNq “ vpNq.

Additivity:
Given three games, pN, v1q, pN, v2q and pN, v3q, where v1pCq “ v2pCq `
v3pCq, it holds that, for all C Ď N , the payoff of a player in pN, v1q is the
sum of its payoffs in pN, v2q and in pN, v3q.

Whereas these four axioms uniquely determine the Shapley value for characteristic function
games, the situation is more complex for generalized games, because a player’s marginal con-
tribution (and consequently the symmetry and null-player axioms) depends on where the new
player in the coalition is placed. In this respect, Nowak and Radzik [2] developed an extension
of the Shapley value by making perhaps the most natural assumption that the marginal contri-
bution of a player is computed when this player is placed last in the coalition. Let us denote this
marginal contribution of ai to T P T pNztaiuq in game vg (according to Nowak and Radzik’s
definition) as ∆NR

vg pT, aiq. Then:

∆NR
vg pT, aiq “ vgppT, aiqq ´ vgpT q. (7)

In what follows, for any ordered coalition, T , let T paiq denote the sequence of players in T that
appear before ai (if ai R T then T paiq “ T ). For example, given T “ pa1, a3, a4, a6q, we have
T pa4q “ pa1, a3q. Using this notation, the Nowak-Radzik value (or the NR value for short) is
defined as follows:

φNR
i pN, vgq “

1

|N |!

ÿ

TPΠpNq

∆NR
vg pT paiq, aiq “ Er∆NR

vg pT paiq, aiqs. (8)

This can be written differently as follows:

φNR
i pN, vgq “

ÿ

CĎN´i

ÿ

TPΠpCq

p|N | ´ |T | ´ 1q!

|N |!
rvgppT, aiqq ´ vgpT qs. (9)

The NR value is the unique value that satisfies the following “fairness” axioms:

Efficiency:
ř

aiPN
φNR
i pvgq “

1
|N |!

ř

TPΠpNq vgpT q.

Null-Player: @ai P N , if vgpT q “ vgppT, aiqq @T P T : ai R T , then φNR
i pvgq “ 0.

Additivity: φNRpvg ` v
1
gq “ φNRpvgq ` φ

NRpv1gq for any two functions, vg and v1g .

Sánchez and Bergantiños [7] developed an alternative extension of the Shapley value based on
the definition of the marginal contribution, where, instead of assuming that this player will be
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placed last, the authors take the average over all possible positions in which the player can be
placed:

∆SB
vg pT, aiq :“

1

p|T | ` 1q

|T |`1
ÿ

l“1

rvgppT, aiq
lq ´ vgpT qs. (10)

The Sánchez-Bergantiños value (or SB value for short) is then computed as:

φSBi pN, vgq “
1

|N |!

ÿ

TPΠpNq

∆SB
vg pT, aiq “ Er∆SB

T paiq
s. (11)

This also can be rewritten differently as follows:

φSBi pN, vgq “
ÿ

CĎN´i

ÿ

TPΠpCq

p|N | ´ |T | ´ 1q!

|N |!p|T | ` 1q

|T |`1
ÿ

l“1

rvgppT, aiq
lq ´ vgpT qs. (12)

As noted by Sánchez and Bergantiños [7], their value for vg is equivalent to the Shapley value
of the average game of vg (see Equation 3 for the definition of the average game), i.e.,

φSBi pN, vgq “ φipN, v̄gq “ Er∆v̄g pCÐÝπi , aiqs. (13)

The SB value is the unique value that satisfies NR’s efficiency and additivity axioms and
the following axioms:

Null-Player If @T P T @l P t1, .., |T | ` 1u : vgppT, aiq
lq “ vgpT q, then φSBi pvgq “ 0.

Symmetry If @T P T´ti,ju@l P t1, .., |T | ` 1u : vgppT, aiq
lq “ vgppT, ajq

lq, then
φSBi pvgq “ φSBj pvgq.

The difference between the NR and SB values is illustrated in the following example:

Example 1. Consider a game with an ordered coalition T˚ P ΠpNq such that vgpT q “ 1
if T “ T˚ and vgpT q “ 0 otherwise. Then, the average value of the grand coalition, taken
over all possible orders, which is 1

n! , needs to be distributed among the players. Using the NR
value, we get φNR

t pNq “ 1
n! , where at is the last player in the ordered coalition T˚, and we get

φNR
i pNq “ 0 for all ai P Nztatu. In contrast, using the SB value, we get φSBi pNq “ 1

n!¨|T 1| “

1
n!¨n for all ai P N . As can be seen, in this example, the NR value rewards the last player in the
order, whereas the SB value rewards all players equally.

Having introduced the Shapley value and its extensions to generalized characteristic func-
tion games, in the following section we consider the issue of implementation.
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4 Implementation

Among the many deeply-studied aspects of the Shapley value is whether there exists a set of
rules (or a mechanism) that incentivizes self-interested players to adopt the Shapley value as a
result of equilibrium behavior.1 In this section we propose a mechanism to implement the NR
and SB values in Subgame-Perfect Nash Equilibria (SPNE).2 We build upon the mechanism by
Dasgupta and Chiu [13].

Given a characteristic function game v, Dasgupta and Chiu’s mechanism is called the Sim-
ple Demand Commitment Game, dentoed by SDCGpvq. The mechanism proposed in this
section modifies it to handle ordered coalitions, i.e., to handle a generalized characteristic
function game vg . As such, we call this mechanism Ordered Demand Commitment Game.
It has two versions, one for the NR value (called ODCGNRpvgq) and the other for the SB
value (called ODCGSB

pvgq). Section 4.1 presents ODCGNR
pvgq, while Section 4.2 presents

ODCGSB
pvgq. Section 4.2.1 proves that each mechanism implements its respective value,

and that each of the aforementioned strategies is, in fact, an Subgame-Perfect Nash Equilibria
(SPNE).

4.1 The ODCGNRpvgq mechanism

The mechanism ODCGNR
pvgq has two main steps:

• Step 1: An order of players is chosen uniformly at random out of all possible orders.
Without loss of generality, let the chosen order be π “ pa1, . . . , anq.

• Step 2: The first player in π (i.e., a1) makes the first move, then the second player in
π (i.e., a2) makes the second move (unless a1 has terminated the game), then the third
player in π (i.e., a3) makes the third move (unless the game has been terminated before
his turn), and so on. The move of every ai : 1 ď i ă n involves choosing one of the
following two options:

– Option 1: Specify a “demand” di P R—an amount of utility that ai will accept in
return for joining any coalition. The mechanism then proceeds to the subsequent
player in the order, i.e., ai`1.

– Option 2: Select a subset C Ď ta1, . . . , ai´1u that ai wants to join. This termi-
nates the game with the following outcome: Coalition invpπpC Y taiuqq forms,
and its payoff is divided as follows: Every ak P C receives dk, while ai receives:

vgpinvpπpC Y taiuqqq ´
ÿ

akPC

dk. (14)

1This is part of the Nash program, which tries to provide a non-cooperative foundation for cooperative
solution concepts [26].

2The SPNE of a game G are all strategy proles s such that for any subgame G1 of G, the restriction of
s to G1 is a Nash Equilibrium of G1. For more details see Shoham and Leyton-Brown [27].
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In other words, ai pays the members their demands, and takes the surplus for
himself. As for non-members, every aj P NzpC Y taiuq is left with no choice but
to form the singleton coalition taju and receive the payoff vgppajqq.

Player an on the other hand has only one choice, which is Option 2.

Note that the above mechanism is a game of perfect information, as the chosen order is made
publicly known before any player makes a move. Step 2 of ODCGNR

pvgq and ODCGSB
pvgq

will be denoted by ODCGNR
π pvgq and ODCGSB

π pvgq, where π is the order chosen in Step 1.

4.2 The ODCGSB pvgq mechanism and the σSBπ,i strategy

The ODCGSB
pvgq mechanism is identical to ODCGNR

pvgq except for the following differ-
ence. In Option 2, the payoff of player ai in Equation (14) becomes:

vgprπpC Y taiuqq ´
ÿ

akPC

dk,

where rπpC Y taiuq is an ordered coalition chosen uniformly at random from the set ΠCYtaiu.
This means ai can choose the identities (but not the order) of the agents who will join him in the
same coalition. The order will be chosen randomly by the mechanism, only after the members
are chosen by ai.

Table 1 summarizes the differences between the SDCG mechanism proposed by Dagupta
and Chiu [13] and the ODCGNR and ODCGSB mechanisms proposed in this article, where pk
denotes the payoff of ak.

4.2.1 Properties of the Mechanisms

Our key results with regards to the ODCGNRpvgq and ODCGSB pvgq mechanisms are pre-
sented in the following theorem.

Theorem 1. Every SPNE of ODCGNR
pvgq and ODCGSB

pvgq has payoffs equal to the NR
value, and the SB value, respectively.

Proof. We start by recalling Equations (4), (8), and (13) in which either the Shapley value, the
NR value or the SB value, respectively, are presented as the expected marginal contribution
of player ai in permutation π, where π P ΠpNq is selected uniformly at random. While this
general functional form is the same for all three values, their differences stem:
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Table 1: A comparison between the SDCG mechanism by Dasgupta and Chiu [13] and our
ODCGNR

pvgq and ODCGSB
pvgq mechanisms. In Step 1 of all three mechanisms, a permutation of

players π is chosen randomly to determine the order of moves (the ith player in π makes the ith move).
Without loss of generality, the table assumes π “ pa1, a2, . . . , anq. In Step 2, the move of ai is to make a
choice between (1) demanding di in return for joining any coalition requested by a subsequent player, and
(2) forming a coalition with (some of) the previous players and ending the game. The main difference is
in the way the mechanisms impose an order on the resulting multi-player coalition.

Option 1 of ai Option 2 of ai
Coalition created
by the mechanism Payoffs

SDCGπpvq
demand
di

choose a subset
C P

ta1, . . . , ai´1u
C Y taiu

@ak P C : pk “ dk
pi “ vpCYtaiuq´

ř

akPC
dk

@ak P NztC Y taiuu : pk “
vptakuq.

ODCGNR
π pvgq

demand
di

choose a subset
C P

ta1, . . . , ai´1u

invpπpC Y taiuqq
loooooooooooomoooooooooooon

C Y taiu ordered as inverse
of π

@ak P C : pk “ dk
pi “ vgpinvpπpC Y taiuqqq ´
ř

akPC
dk

@ak P NztC Y taiuu : pk “
vgppakqq.

ODCGSB
π pvgq

demand
di

choose a subset
C P

ta1, . . . , ai´1u

rπpC Y taiuq
loooooooomoooooooon

pC Y taiu ordered at
randomq

@ak P C : pk “ dk
pi “ vgprπpC Y taiuqq ´
ř

akPC
dk

@ak P NztC Y taiuu : pk “
vgppakqq.

• from the different underlying value function—in the case of the Shapley value this is the
characteristic function v, in the case of the NR value this is the generalized characteristic
function vg , and in the case of the SB value this is the average characteristic function for
vg , i.e., it is v̄g; and/or

• from the different definition of the marginal contribution—in the case of the Shapley
value and the SB value we have ∆vpCÐÝπi , aiq and ∆v̄g pCÐÝπi , aiq, respectively (Equa-
tion (5) for the value function v and v̄g), while for the NR value we have ∆NR

vg pT, aiq
(Equation (7)).

Step 1 of both our mechanisms is the same as Step 1 of the mechanism by Dasgupta and
Chiu [13]: a permutation π is chosen uniformly at random. Therefore, what we need to show
for each value is that our refinements account for the differences in the value function and the
marginal contribution as outlined above. To this end, let us consider the following three lemmas:

LEMMA 4.1.1. Given pN, vgq, let π P ΠpNq be an order of players chosen uniformly at ran-
dom in Step 1 of ODCGNR

pvgq (ODCGSB
pvgq). Then, for every player ai P N , Step 2 of the

mechanism, i.e., ODCGNR
π pvgq (ODCGNR

π pvgq), is strategically equivalent to SDCGπpvg,πq
(SDCGπpv̄gq).

Proof. We consider ODCGNR
pvgq first. By rules of this mechanism (see Table 1), any coali-

tionCYtaiu chosen by ai in Option 2 will be created as an ordered coalition invpπpCYtaiuqq.

18



Implementation of a Value for Generalized . . .

Thus, the choices offered to ai by ODCGNR
pvgq, i.e., every invpπpC Y taiuqq in the gener-

alized characteristic function game vg , are in fact equivalent to the choices offered to ai by
SDCGpvg,invpπqq, i.e., every CYtaiu in the characteristic function game vg,invpπq. This shows
that Step 2 of ODCGNR

pvgq is strategically equivalent to Step 2 of SDCGpvg,invpπqq.
Turning now to ODCGSB

pvgq, by rules of this mechanism (see again Table 1), any coali-
tion C Y taiu chosen by ai in Option 2 will be created as an ordered coalition pai, π̃pCqq.
Recall that π̃pCq denotes a randomly ordered coalition made of players in C. Since player ai
has to select C without knowing how it will be ordered, his rational behaviour is to consider the
expected value of C Ytaiu over all possible orders of C, bearing in mind that he will be placed
in the first position of the ordered coalition (as per the rules of the mechanism). This expected
value is:

1

|C|!

ÿ

π̃PΠpCq

vgpπ̃pC Y taiuqq,

which is precisely v̄gpCYtaiuq (see Section 3). Thus, the choices offered to ai by ODCGSB
pvgq,

i.e., every pai, π̃pCqq in the generalized characteristic function game vg , are equivalent to the
choices offered to ai by SDCGpv̄gq, i.e., every CYtaiu in the characteristic function game v̄g .
This shows that Step 2 of ODCGSB

pvgq is strategically equivalent to Step 2 of SDCGpv̄gq.

LEMMA 4.1.2. Given a (strictly) convex ordered game pN, vgq, and a permutation π P

ΠpNq, the game pN, vg,πq is (strictly) convex.

Proof. We need to show that:

vg,πpCYtaiuq´vg,πpCq pąq ě vg,πpDYtaiuq´vg,πpDq, where ai P NzC and D Ă C Ă N.
(15)

To this end, observe that every member of D appears in C, and if a player, ai, appears before
another, aj , in πpDq, then it will also appear before it in πpCq, as both coalitions are ordered
according to π. Therefore, based on Definition 1, we have: πpDqtĂπpCq. By a similar reason-
ing, we have πpC Y taiuqtĂπpDY taiuq. This, as well as the fact that vg is convex, implies the
following (based on Definition 5):

vgpπpC Y taiuqq ´ vgpπpCqq pąq ě vgpπpD Y taiuqq ´ vgpπpDqq. (16)

Moreover, by definition, we have vg,πpCq “ vgpπpCqq for every C Ď N . This, together with
Equation (16), imply that Equation (15) holds.

LEMMA 4.1.3. Given a (strictly) convex ordered game pN, vgq, and a permutation π P

ΠpNq, the game pN, v̄gq is (strictly) convex.

Proof. We know from Lemma 4.2.1 that, for all π P ΠpNq and all ai P N , we have:

vg,πpC Y taiuq ´ vg,πpCq pąq ě vg,πpD Y taiuq ´ vg,πpDq,

for every D Ă C Ă Nztaiu. Thus:
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1

|N |!

ÿ

πPΠpNq

´

vg,πpC Ytaiuq´ vg,πpCq
¯

pąq ě
1

|N |!

ÿ

πPΠpNq

´

vg,πpDYtaiuq´ vg,πpDq
¯

.

(17)
Now observe that, for every coalition C Ď N , we have:

1

|N |!

ÿ

πPΠpNq

`

vπpCq
˘

“
1

|C|!

ÿ

πPΠpCq

`

vπpCq
˘

“ v̄gpCq. (18)

Equations (17) and (18) mean that:

v̄gpC Y taiuq ´ v̄gpCq pąq ě v̄gpD Y taiuq ´ v̄gpDq.

Next, building upon the above three lemmas, as well as the result of Dasgupta and Chiu [13],
we prove the correctness of Theorem 1.

Dasgupta and Chiu [13] showed that, for a convex characteristic function game v, all the
SPNE of their mechanism, SDCGpvq, result in the Shapley value in expectation. They also
showed that in the equilibrium any player ai in the randomly chosen order π (except for the last
player) makes a demand that equals his contribution to the coalition consisting of all subsequent
players in π (we will denote this coalition by CÝÑπi ). For instance, given pta1, a2, a3u, vq and
π “ pa2, a1, a3q, player a2 demands d2 “ ∆vpCÝÑπ2

, a2q “ vpta1, a3u Y ta2uq ´ vpta1, a3uq,
and player a1 demands d1 “ ∆vpCÝÑπ1

, a1q “ vpta3u Y ta1uq ´ vpta3uq. The last player in π,
i.e., a3, forms the grand coalition, ta1, a2, a3u, and satisfies the demands of a1 and a2, leaving
him with a payoff equal to his marginal contribution to the empty set. That is, a3 receives:

vpta1, a2, a3uq ´ d2 ´ d1 “ vpta3uq,

or, equivalently, ∆vpCÝÑπ3
, a3q “ vpH Y ta3uq ´ vpHq.

Then, since the following holds:

Er∆CÝÑπi
,is “

1

|N |!

ÿ

πPΠpNq

∆vpCÝÑπi , aiq “
1

|N |!

ÿ

πPΠpNq

∆vpCÐÝπi , aiqm “ Er∆CÐÝπi
,is, (19)

the SDCGpvq mechanism implements the Shapley value in expectation (see Equation (4)).
From the above result of Dasgupta and Chiu, as well as Lemmas 4.2.1 and 4.2.1, it fol-

lows that, for a convex generalized characteristic function, vg , all SPNE of our mechanism
ODCGNR

pvgq result in expectation in the following value:

φ˚i pN, vgq “
1

|N |!

ÿ

πPΠpNq

∆vg,invpπqpCÝÑπi , aiq, (20)
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while all SPNE of our mechanism ODCGSB
pvgq result in expectation in:

φ˚˚i pN, vgq “
1

|N |!

ÿ

πPΠpNq

∆v̄g pCÝÑπi , aiq. (21)

Equations (20) and (21) imply that, in order to prove Theorem 1, it suffices to prove that,
the following two equations hold for all ai P N :

φ˚i pN, vgq “
1

|N |!

ÿ

πPΠpNq

∆vg,invpπqpCÝÑπi , aiq “
1

|N |!

ÿ

TPΠpNq

∆NR
vg pT paiq, aiq “ φNRi pN, vgq,

(22)
and

φ˚˚i pN, vgq “
1

|N |!

ÿ

πPΠpNq

∆v̄g pCÝÑπi , aiq “
1

|N |!

ÿ

TPΠpNq

∆v̄g pCÐÝπi , aiq “ φSBi pN, vgq. (23)

Since the correctness of Equation (23) is implied by Equation (19), it remains to prove the
correctness of Equation (22). We will use the following lemma:

LEMMA 4.1.4. Given pN, vgq and ai P N , there exists a bijection fi : ΠpNq Ñ ΠpNq such
that for all π P N :

∆vg,invpπqpCÝÑπi , aiq “ ∆NR
vg pfipπqpaiqlooomooon

“T paiq

, aiq. (24)

Proof. Let fi be defined as follows: for every π “ pak1 , . . . , aki´1
, aki , aki`1

, . . . , aknq P
ΠpNq, where aki “ ai, we have fipπq “ invpπq “ pakn , . . . , aki`1

, aki , aki´1
, . . . , ak1q. For

this bijection, the right hand side of Equation (24) becomes:

∆NR
vg pfipπqpaiq, aiq “ ∆NR

vg pinvpπqpaiq, aiq “ vgppakn , . . . , aki´1
, akiqq ´ vgppakn , . . . , aki´1

qq.

As for the left-hand side of Equation (24), we have:

∆vg,invpπqpCÝÑπi , aiq “ vg,invpπqpCÝÑπi Y taiuq ´ vg,invpπqpCÝÑπi q

“ vg,invpπqptaki , aki`1
, . . . , anuq ´ vg,invpπqptaki`1

, . . . , aknuq. (25)

Since, by definition, we have vg,πpCq “ vgpπpCqq for all C Ď N , we can rewrite Equation (25)
as follows:

∆vg,invpπqpCÝÑπi , aiq “ vgpinvpπqptaki , aki`1 , . . . , anuq ´ vgpinvpπqptaki`1 , . . . , aknuqq

“ vgppakn , . . . , aki´1 , akiqq ´ vgppakn , . . . , aki´1qq. (26)

Hence, Equation (24) holds.

This concludes the proof of Theorem 1.
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Finally, we note that, based on Lemma 4.2.1, the equilibrium strategy from Dasgupta and
Chiu [13] can be straightforwardly adapted to our ODCGNR and ODCGSB mechanisms (by
replacing vpCq with vgpinvpπpC Y taiuqq and 1

|C|!

ř

TPΠpCYtaiuq
vgpT q, respectively). The

resulting equilibrium strategies are detailed in Appendix A.

5 Conclusions

Generalized characteristic function games are attracting increasing interest in the literature due
to their manifold potential applications. In this article we the implementational aspects of these
games. In particular, building upon the mechanism by Dasgupta and Chiu, we proposed the first
mechanisms that implement the Nowak-Radzik value and the Sánchez-Bergantiños value.
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Appendix A: Strategies in the ODCGNR
pvgq and ODCGSB

pvgq mechanisms

In this appendix we present the equilibrium strategy of player ai. It has two version; one for
ODCGNR

pvgq, denoted by σNR
π,i , and the other forODCGSB

pvgq, denoted by σSB
π,i . Before we

introduce these strategies, we need to introduce additional notation. Let Hi “ Ri´1 be the set
of all possible histories that ai may face; every history inHi represents a unique set of demands
pd1, . . . , di´1q. Now, let ai face the history h “ pd1, . . . , di´1q and let D be any subset of
players from tai, ai`1, . . . , anu. We define MNR

h,π pDq as follows:

MNR
h,π pDq “ max

CĎta1,...,ai´1u

$

&

%

vgpinvpπpD Y Cqqq ´
ÿ

ajPC

dj

,

.

-

. (27)

That is, MNR
h,π pDq is the maximum payoff that coalition D can obtain for itself if it is allowed

to choose a set of new members, denoted by C, from the players that precede ai, bearing in
mind that the mechanism will enforce the formation of invpπpDYCqq. Furthermore, for every
j P ti, . . . , nu, let Phπ pi, jq denote the following linear program:

Phπ pi, jq : max
di,...,dj

di subject to:

dk1 ` . . .` dkm ěMNR
h,π ptak1 , . . . , akmuq

for all k1, . . . , km where i ď k1 ă . . . ă km ď j

and di ` . . .` dj “MNR
h,π ptai, . . . , ajuq.

In other words, Phπ pi, jq computes for players ai, . . . , aj and characteristic function MNR
h,π p¨q a

core allocation that gives ai the largest payoff. Next, we outline the conditions that characterize
the maximal program for player ai:

Definition 6. Given a history h “ pd1, . . . , di´1q, a program Phπ pi, jq for player ai is called a
maximal program if:

• there exists a solution pdi, . . . , djq for Phπ pi, jq, i.e. the program is feasible.3

• no other feasible program Phπ pi, kq : k ‰ j has a greater objective-function value;

• no other feasible program Phπ pi, kq : k ą j has the same objective-function value.

The above definition implies that every maximal program is unique. We are now ready to
introduce our strategy. Recall that every ai : 1 ď i ă n must choose between two options,
either to specify a demand, or select a subset of ta1, . . . , ai´1u, while an has only one option,
which is to select a subset from ta1, . . . , an´1uq. This implies that a strategy of ai : 1 ď i ă n
is a mapping from Hi to R Y 2ta1,...,ai´1u, while a strategy of an is a mapping from Hn to
2ta1,...,an´1u. Our strategy, σNR

π,i , proceeds as follows:

3We note that the trivial program Phπ pi, iq is always feasible.
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• If Phπ pi, jq is maximal, where j ą i, then demand the value of the objective function in
Phπ pi, jq

• If Phπ pi, iq is maximal, then form the ordered coalition invpπpC˚ Y taiuqq, where C˚

solves:

MNR
h,π ptaiuq “ max

CĎta1,...,ai´1u

$

&

%

vgpinvpπpC Y taiuqqq ´
ÿ

ajPC

dj

,

.

-

. (28)

If there are more than one such argmaxes, then following Dasgupta and Chiu [13] we adopt the
lexicographic tie-breaking rule.

As for the strategy σSB
π,i , it is identical to σNR

π,i except for the following difference. Every
MNR
h,π pDq is replaced with MSB

h,πpDq, which is defined as follows:

MSB
h,πpDq “ max

CĎta1,...,ai´1u

$

&

%

1

|C|!

ÿ

TPΠpCYtaiuq

vgpT q ´
ÿ

ajPC

dj

,

.

-

. (29)
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Appendix B: Main Notation Used in the Article

Players, coalitions, permutations
N The set of players.
n Cardinality of set N .
ai A player in N .
N´i The set of players N without player ai.
C,D A coalition.
S, T An ordered coalition.
pT, Sqk The ordered coalition that results from inserting S at the kth position in T .
pT, aiq The ordered coalition that results from inserting ai at the end of T .

tĎ An extension of the notion of a subset to ordered sets (see Definition 1).
ΠpCq The set of all possible permutations of the players in C.
π A permutation.

invpπq The inverse of π.

πpCq
The ordered coalition which consists of all the players inC and which is ordered
according to π.

Value functions, games, solution concepts
v The characteristic function.
vg The generalized characteristic function.
vg,π The characteristic function, where vg,πpCq “ vgpπpCqq.
pN, vq A coalitional game in a characteristic function form.
pN, vgq A coalitional game in a generalized characteristic function form.
pN, v̄gq The average game for vg (v̄g has the characteristic function form).
CÐÝπ piq A coalition that consists of all the players that are in permutation π before ai.

∆vpCÐÝπ piq, aiq The marginal contribution of player ai to C in the Shapley value (Equation 5).

∆NR
vg pT, aiq The marginal contribution of player ai to T in the NR value.

∆SB
vg pT, aiq The marginal contribution of player ai to T in the SB value (Equation 10).

∆v̄g pCÐÝπ piq, aiq The marginal contribution of player ai to C in the SB value (Equation 5).

φipN, vq The Shapely value of player ai in game pN, vq.

φNR
i pN, vgq The Radzik-Nowak value of player ai in game pN, vgq.

φSB
i pN, vgq The Sánchez-Bergantiños value of player ai in game pN, vgq.
Er¨s The expectation operator.

ODCGNR and ODCGSB mechanisms
di A a “demand” made by player ai.

ODCG
NR{SB
π The subgame for the NR value and the SB value, respectively, given π.

Hi The set of all histories that ai can face.
hi A history in Hi.

σ
NR{SB
π,i The strategy of player ai in ODCGNR{SB

π .

MNR
h,πpDq

The maximum payoff that coalition D can obtain for itself if it is allowed to
optimally choose a set of new members C from the players that precede ai.

Phπ pi, jq A linear program.
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