
Zeszyty Naukowe WWSI, No 17, Vol. 11, 2017, s. 7-22
DOI: 10.26348/znwwsi.17.7

Using Template Method and Strategy Design Patterns
in the Python Implementation of a Metaheuristic Algorithm

for Solving Scheduling Problems

Ewa Figielska*

Warsaw School of Computer Science

Abstract

The paper shows how the Template Method and Strategy design patterns can
be used in a program which solves different scheduling problems by means of
a metaheuristic algorithm. The benefits offered by these design patterns as well
as their drawbacks are discussed. An implementation example in the Python
programming language is provided.

Keywords – Design patterns, Python, Metaheuristic, Scheduling

Introduction

Design patterns represent solutions to common design problems arising in software
development. They come from the experience of the object-oriented software devel-
opers, not from the inventions. Design patterns were first introduced by Gamma,
Helm, Johnson and Vlissides (who are known as Gang of Four, GOF) in book [1].
That book discusses 23 patterns and provides examples in the C++ programming
language. Since the GOF book was first published in 1995, design patterns (existing
and new ones) have been widely studied by many authors in the context of various

* E-mail: efigielska@poczta.wwsi.edu.pl

Manuscript received October 7, 2017.

7

Ewa Figielska

programming languages, e.g. see [2], [3] and [4, 5, 6] for, respectively, Java, C# and
Python implementations.

This paper considers two design patterns: Template Method and Strategy, which
were originally introduced in the GOF book and then, in 2010, indicated by Gamma,
Helm and Johnson as two of the eight core patterns [7]. We show how these patterns
can be used in a program which aims at solving different scheduling problems using
the same metaheuristic algorithm. The benefits offered by these design patterns as
well as their drawbacks are discussed. Implementation examples in the Python pro-
gramming language are provided.

1. Metaheuristic

1.1 Exact algorithms, heuristics and metaheuristics

In the engineering practice, one often deals with optimization problems which are
hard to solve (belong to the class of NP-hard problems). Such problems can be solved
to optimality by exact algorithms only for small-sized instances. Generally, an exact
algorithm provides an optimal (the best possible) solution in a finite amount of time,
but unfortunately this finite time may increase exponentially with the problem size
for the NP-hard problems.

Heuristics on the other hand, do not guarantee optimal solutions (they provide
approximate solutions which are usually worse than the optimal ones) but they use
a “reasonable” amount of time. Many heuristics are problem dependent, which
means that their design is tightly connected with the solved problem, as they try to
take advantage of the problem properties. They often use some greedy techniques
and, during the search process, move only to solutions that immediately improve the
current solution. Therefore, they can be easily trapped in local optima which are quite
far from the optimal solution.

Metaheuristics are the “more general heuristics” which define frameworks that
can be used for wide ranges of problems. However, the details of these frameworks,
e.g. the ways in which solutions are represented and evaluated, remain always prob-
lem dependent and must be adapted to the solved problem. During the search pro-
cess, metaheuristics may temporary move to solutions that are worse than the current

8

Using Template Method and Strategy Design Patterns in the Python …

one, and thus they are able to escape from local optima and explore more thoroughly
the solution space.

1.2 Simulated annealing

In this paper, as an example of a metaheuristic algorithm, a simulated annealing (SA)
algorithm [8] is used.

A SA algorithm is an iterative procedure which starts from an initial solution and
in each successive iteration, creates a new solution by introducing a small change
into a current solution (a new solution is called a neighbor of the previous one). If
the new solution is better than the current one, it is accepted and taken as a current
solution in the next iteration. If it is worse than the previous one, it is accepted with
some probability ܲ = ݁ି∆/் which is a decreasing function of ∆/ܶ, where ܶ is a pa-
rameter called temperature and ∆ is a difference between the objective function values
for the new and the previous solutions (for the minimization problem).

Figure 1. Probability of the acceptance of worse solutions

The algorithm starts with a high value of the temperature. So, at the beginning of the
optimization process, the probability of accepting worse solutions is great and the
algorithm explores wide areas of the search space identifying parts with good quality
solutions. With the progress in the optimization process, the temperature is gradually

0

0.2

0.4

0.6

0.8

1

1.2

0
0.

24
0.

48
0.

72
0.

96 1.
2

1.
44

1.
68

1.
92

2.
16 2.

4
2.

64
2.

88
3.

12
3.

36 3.
6

3.
84

4.
08

4.
32

4.
56 4.

8
5.

04
5.

28
5.

52
P

Δ/T

9

Ewa Figielska

lowered. Thus, the probability of accepting worse solutions decreases and the algo-
rithm is able to exploit the promising areas more thoroughly. When a new solution
is “much worse” than the current one, the value of ∆ is great, and such solution is
accepted with low probability. When a new solution is only slightly worse than the
previous one, it is accepted with a high probability, as ∆ has a small value in such
case. In Figure 1, we can see how the values of probability ܲ = ݁ି∆/் decrease with
the increase in ∆/ܶ.
 Usually, at a fixed level of the temperature, a number of new solutions, ܮ, are
generated and checked. The temperature is decreased (every ܮ iterations of the al-
gorithm) by multiplying its current value by a reduction factor 0) ݎ < ݎ < 1). The
search process continues while the temperature is greater than some minimal value, ௠ܶ௜௡ (if ܶ ≤ ௠ܶ௜௡ the optimization process becomes “frozen”). The pseudocode of
the SA algorithm is shown in Figure 2.

Figure 2. Pseudocode of the SA algorithm

1. Generate an initial solution ݏ and calculate its objective function value ݂(ݏ);
ݐݏܾ݁ݏ .2 = {ݐݏܾ݁ݏ ,as the best found so far ݏ remember the current solution} ;ݏ
3. Set the values of the SA algorithm parameters: ܶ, ܶ݉ ݅݊ ;ܮ ,ݎ ,
4. while ܶ > ܶ݉ ݅݊ do {while an optimization process is not „frozen”}
5. for ݅ = 1 to ܮ do { for a fixed value of the temperature ܶ, repeat steps 6-13 ܮ times}
6. Generate a neighbor ݏ’ of solution ݏ and evaluate it by calculating the objective function value ݂(ݏ′);
7. ∆= ′ݏ)݂) − ;(ݏ)݂
8. if ∆≤ 0 then {if new solution ݏ’ is not worse than the current one, ݏ}
ݏ .9 = {accept the new solution as the current one} ;’ݏ
10 if ݂(ݏ) < ݐݏܾ݁ݏ)݂) then ݐݏܾ݁ݏ = if the new solution is better than the best solution found so} ;ݏ

far, ݐݏܾ݁ݏ, update ݐݏܾ݁ݏ }
11. else {if the new solution is worse than the current one}
12. if 0,1]݀݊ܽݎ) < ݁−∆/ܶ then ݏ = {ܶ/∆−݁ accept the new solution with probability} ;’ݏ
13. end if;
14. end for;
15. ܶ = {reduce the temperature} ܶݎ
16. end while;
17. return ݐݏܾ݁ݏ ; {return the best solution found}

10

Using Template Method and Strategy Design Patterns in the Python …

2. Scheduling problems

We consider two basic scheduling problems [9] described in the following sub-
sections.

2.1 Problem P1

Problem P1 can be formulated as follows. There are ݊ jobs to be perfomed on ݉
parallel identical machines. Parallel machines perform the same functions, so, each
job can be processed on any of them (such machines can represent cross-trained
teams of workers or processing units). Job ܬ௝ to be completed needs to be processed
on any machine for ݌௝ time units. The processing time, ݌௝, for job ܬ௝ is the same for
all the machines because they are identical. The aim is to determine the assignment
of machines to jobs, so as to minimize the maximum job completion time, denoted
by ܥ௠௔௫.

Let us consider the following example.
Assume that ݊ = 4 jobs are to be processed in a system consisting of ݉ = 2 par-

allel identical machines. The processing times of jobs are given in Table 1.

Table 1. Processing times of jobs for problem P1

 ૛ 2 2 3 1ࡹ ,૚ࡹ ૝ࡶ ૜ࡶ ૛ࡶ ૚ࡶ

The solution to problem P1, denoted by ݏ, can be represented by a sequence of num-
bers being the indices of machines assigned to successive jobs. For example, ݏ = [2, 1, 1, 1] represents the assignment of machines to jobs in which machine ܯଵ
is assigned to jobs ܬଶ, ܬଷ and ܬସ, and machine ܯଶ is assigned to job ܬଵ. The Gantt
chart of the schedule represented by this solution is shown in Figure 3a. In Figure
3b, we can see a schedule for ݏ = [1, 1, 2, 2], which represents the assignment where
jobs ܬଵ and ܬଶ are processed on machine ܯଵ and jobs ܬଷ and ܬସ are processed on
machine ܯଶ.

11

Ewa Figielska

Figure 3. Schedules obtained for (a) ݏ = [2, 1, 1, 1] and (b) ݏ = [1, 1, 2, 2].

In problem P1, the objective is to minimize the maximum job completion time, ܥ௠௔௫
(i.e. the length of the schedule), which is given by the following formula: ܥ௠௔௫ = max௝ ௝ (1)ܥ
where ܥ௝ is the completion time of job ܬ௝.

In our example, ܥ௠௔௫ = maxሼ2, 2, 5, 6ሽ = 6 for ݏ = [2, 1, 1, 1], and ܥ௠௔௫ =maxሼ2, 4, 3, 4ሽ = 4 for ݏ = [1, 1, 2, 2]. So, ݏ = [1, 1, 2, 2] represents a better sched-
ule than that given by ݏ = [2, 1, 1, 1].

3.2 Problem P2

Problem P2 can be formulated as follows. There are ݊ jobs to be performed by 2 dedi-
cated machines. Each job has to be processed first on machine 1 and then on machine
2 (dedicated machines can represent specialized teams of workers or a client-server
configuration in a production or computer environment). The time for which job ܬ௝ is
processed on machine ܯ௜ is denoted by ݌௜௝. The aim is to find an order in which jobs
pass through the machines so as to minimize the mean flow time, denoted by ܨത (i.e.
the mean response time of a system).
 Let us consider the following example.

Assume that ݊ = 3 jobs are to be processed in a system consisting of ݉ = 2 ded-
icated machines. The values of processing times of jobs are given in Table 2.

(a) M1 J4
M2

time
0 1 2 3 4 5 6

(b) M1 Jj Time for which job j is processed
M2 J4

time Idle time of a processor
0 1 2 3 4 5 6

J2

J1 J2
J3

J1
J3

12

Using Template Method and Strategy Design Patterns in the Python …

Table 2. Processing times of jobs for problem P2

 ૛ 5 1 3ࡹ ૚ 4 3 1ࡹ ૜ࡶ ૛ࡶ ૚ࡶ

The solution, ݏ, to problem P2 can be represented by a sequence of numbers being
the indices of jobs. It determines the order in which jobs pass through the machines,
e.g. ݏ = [3, 1, 2] means that job ܬଷ is processed as the first one, then goes jobs ܬଵ
and, as the last one, job ܬଶ.

Figures 4a and 4b present the Gantt charts of the schedules obtained for the or-
derings of jobs given by ݏ = [1, 2, 3] and ݏ = [3, 1, 2], respectively.

Figure 4. Schedules obtained for (a) ݏ = [1, 2, 3] and (b) ݏ = [3, 1, 2]

In problem P2, the objective is to minimize the mean flowtime of jobs given by the
following formula: ܨത = ଵ௡ ෍ ௝௡ܥ

௝ୀଵ (2)

where ܥ௝ is the completion time of job ܬ௝ on the last machine.
The values of ܨത depend on the ordering of jobs. In our example, ܨത =భయ(9 + 10 + 13) = 10.7 for ݏ = [1, 2, 3], and ܨത = భయ(4 + 10 + 11) = 8.3 for ݏ =[3,1,2]. So, ݏ = [3,1,2] represents a better schedule than that given by ݏ = [1, 2, 3].
Both the considered problems are NP-hard.

(a) M1 J3
M2 J2

time
1 2 3 4 5 6 7 8 9 10 11 12 13 14

(b) M1 J3 Jj Time for which job j is processed
M2 J2

time Idle time of a processor
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

J3
J1

J1J3

J2
J1

J1 J2

13

Ewa Figielska

3. SA algorithm for problems P1 and P2

When using the SA algorithm to solve problems P1 and P2, some of the algorithm
steps are performed in different ways depending on the characteristics of the solved
problem, namely: the generation of an initial solution, creation of a neighbor solution
and calculation of the objective function value. This is caused by the fact that solu-
tion representations and objectives are different for problems P1 and P2. For problem
P1, the solution (an assignment of machines to jobs) is represented by a sequence of
the machine indices. So, an initial solution can be created as a sequence of random
numbers taken from range [1, ݉] in which repetitions are allowed. The solution of
problem P2 (an order in which jobs are processed) is represented by a sequence of
job indices. So, as an initial solution we can take a sequence of random numbers
from range [1, ݊] without repetitions.
 While solving problem P1, a neighbor solution can be created by randomly
changing a machine index for a randomly chosen position (job) in the current solu-
tion. When dealing with problem P2, a new solution must ensure that a job index is
not duplicated. Therefore, the construction of a neighbor may consist in moving
a randomly chosen job to a different, randomly chosen position.
 The objective function values are calculated according to formulas (1) and (2) for
problems P1 and P2, respectively.

3.1 Ordinary design

The most straightforward approach for the implementation of the SA algorithm for
problems P1 and P2 is to create two separate SA functions, one for P1 and the other
for P2. However, this means the repetition of great parts of the SA algorithm code
and thus, the violation of the “don't repeat yourself” (DRY) principle of software
development [10].

A better approach consists in moving the code which depends on the solved prob-
lem to several separate functions and leaving the remaining code in one function
which calls the problem specific operations using conditional statement if...else
(see Figure 5). This design, however, has a serious drawback. When we want to ex-

14

Using Template Method and Strategy Design Patterns in the Python …

tend the functionality of the program by adding a new problem, the if…else state-
ment must be also extended (and it will grow with the increase in the number of
added problems). Thus, the function containing such conditional statement is open
for modifications, which makes it susceptible to bugs and difficult for testing. It vi-
olates the Open-Closed Principle (OCP) by R. Martin, which says that “software
entities (classes, modules, functions etc.) should be open for extension but closed for
modification” [3].

Figure 5. Fragment of the SA algorithm with if…else statement for choosing problem
specific operations

3.2 Template Method based design

The Template Method design pattern helps us to overcome the problems connected
with the previously described designs. The Template Method defines “the skeleton of
an algorithm in an operation, deferring some steps to subclasses. The subclasses rede-
fine certain steps of an algorithm without changing the algorithm's structure” [1].

The structure of the Template Method design pattern for the SA algorithm solving
problems P1 and P2 is presented in Figure 6.

SA is an abstract class with the run() method which defines the skeleton of the
SA algorithm. The problem specific operations generate_initial_solu-
tion(), create_neighbor() and calculate_objective() are declared as
abstract in the SA class. They are implemented in the subclasses of the SA class:
SAforP1 and SAforP2. Note that the template method leads to an inverted control
structure: a parent class calls the operations of a subclass and not the other way
around.

 ...

 if problem == 1 then
 create solution ݏ representing an assignment of processors to jobs;
 evaluate solution ݏ according to formula (1);
 else if problem == 2 then
 create solution ݏ representing an ordering of jobs;
 evaluate solution ݏ according to formula (2);
 ...

15

Ewa Figielska

Figure 6. Template Method design pattern for the SA algorithm solving two scheduling problems

The Python implementation of the SA class with the run()method containing the
algorithm skeleton is presented in Figure 7. The values for the algorithm parameters
are set in a special method __init__()being a constructor. The run()method re-
turns the best solution found by the algorithm along with its objective function value.
Methods random() and exp() (used in line 18) are defined in the Python modules
random and math, respectively.

Figure 7. Template Method design pattern: Python implementation of the SA class

1. class SA:

2. def __init__(self, T, Tmin, r, L):

3. self.T, self.Tmin, self.r, self.L = T, Tmin, r, L

4.

5. def run(self):

6. s = self.generate_initial_solution()

7. obj = self.calculate_objective(s)

8. best_s, best_obj = s, obj

9. while (self.T > self.Tmin):

10. for i in range(self.L):

11. neighbor_s = self.create_neighbor(s)

12. neighbor_obj = self.calculate_objective(neighbor_s)

13. delta = neighbor_obj – obj

14. if delta <= 0:

15. s, obj = neighbor_s, neighbor_obj

16. if obj < best_obj:

17. best_s, best_obj = s, obj

18. elif random() < exp(-delta/self.T):

19. s, obj = neighbor_s, neighbor_obj

20. self.T *= self.r

21. return best_s, best_obj

16

Using Template Method and Strategy Design Patterns in the Python …

The implementation of the SAforP1 class is shown in Figure 8. The default values for
the problem and algorithm related parameters are passed to the constructor. The prob-
lem related parameters, indicated by variables n, m and p (where p is a list of job
processing times) have the values taken from the example presented in Section 2.1.
Methods choices(), randint() and choice() (used in lines 7, 11 and 13, re-
spectively) are defined in the Python module random. Method create_neighbor()
constructs a neighbor of solution s (passed to it as an argument) by randomly changing
a value in a randomly chosen position so as to ensure that a new value is different than
the previous one. (In other words, in a neighbor of s, a new, randomly chosen machine
index is assigned to a randomly chosen job). The position is stored in variable pos (line
11). Variable proc (line 12) indicates the list of the legitimate values for machine indi-
ces. The new machine index is chosen (in line 13) from the values in list proc. Method
calculate_objective(), for each machine, calculates the sum of the processing
times of jobs assigned to this machine (line 19), and returns the greatest of these sum
values (Cmax).

In order to solve problem P1, a client creates the SAforP1 object and uses it to
invoke the run() method as shown in Figure 9. The algorithm output is shown after
signs >>>.

Figure 8. Template Method design pattern: Python implementation of the SAforP1 class

1. class SAforP1(SA):

2. def __init__(self, n=4, m=2, p=[2, 2, 3, 1], T=10, Tmin=0.1, r=0.9, L=5):

3. super().__init__(T, Tmin, r, L)

4. self.n, self.m, self.p = n, m, p

5.

6. def generate_initial_solution(self):

7. return choices(range(self.m), k=self.n)

8.

9. def create_neighbor(self, s):

10. neighbor = s.copy()

11. pos = randint(0, self.n-1)

12. proc = [x for x in range(self.m) if x != neighbor[pos]]

13. neighbor[pos] = choice(proc)

14. return neighbor

15.

16. def calculate_objective(self, s):

17. Cmax = 0

18. for i in range(self.m):

19. c = sum(self.p[j] for j in range(self.n) if s[j] == i)

20. if c > Cmax:

21. Cmax = c

22. return Cmax

17

Ewa Figielska

Figure 9. Template Method design pattern: running the algorithm

To prevent the instantiation of the SA class we can create it as an abstract class by
deriving from ABC (abstract base class provided in Python module abc) and indicating
methods generate_initial_solution(), create_neighbor()and calcu-
late_objective() as abstract with @abstractmethod decorator (see Figure 10).

Figure 10. Template Method design pattern: SA implemented as an abstract class

3.3 Strategy based design

According to [1] the strategy design pattern “defines a family of algorithms, encap-
sulates each one, and makes them interchangeable.” A client dynamically chooses
the algorithm that suits its current need.

In our program, we would like to dynamically choose the set of problem specific
operations which are used for generating the initial solutions, creating the neighbors

sap1 = SAforP1()
s,o = sap1.run()
print('solution = {}, objective = {}'.format(s, o))

>>> solution = [0, 0, 1, 1], objective = 4

 from abc import ABC, abstractmethod

 class SA(ABC):

 ...

 @abstractmethod

 def generate_initial_solution(self):

 pass

 @abstractmethod

 def create_neighbor(self, s):

 pass

 @abstractmethod

 def calculate_objective(self, s):

 pass

18

Using Template Method and Strategy Design Patterns in the Python …

and calculating the objectives in the SA algorithm. For this purpose, we can use the
Strategy pattern as shown in Figure 11.

Figure 11. Strategy design pattern for the SA algorithm solving two scheduling problems.

In the design presented in Figure 11, abstract class P declares the interface imple-
mented by classes P1 and P2 representing the operations specific to problems P1 and
P2, respectively. The SA class is configured with the object of a subclass of class P and
maintains a reference (called problem) to class P. Using this reference the problem
specific methods are polymorphically used in the run() method.

In Python we do not need inheritance to use polymorphism (as Python is a dy-
namically typed language), so in our program, we do not need class P for defining
the interface for P1 and P2. It is enough that classes P1 and P2 contain methods
invoked in the SA class: generate_initial_solution(), create_neigh-
bor() and calculate_objective(). The implementation of class P1 is almost
the same as the implementation of SAforP1 with the only difference that the con-
structor now takes only problem related parameters (instead of both the problem and
the algorithm related parameters as was done in the Template Method based design).

The fragments of the Python implementation of classes SA, P1 and P2 for the
Strategy based design are shown in Figure 12. In Figure 13, we can see method
run()called by two SA objects. The first object is configured with the P1 object, the
second one with the P2 object. The algorithm output is also shown.

19

Ewa Figielska

Figure 12. Strategy design pattern: fragments of the Python implementation of classes SA,
P1 and P2

Figure 13. Strategy design pattern: running the algorithm

3.4 Benefits and drawbacks

Using the Template Method pattern or the Strategy pattern we avoid code duplication
(there is one algorithm for both the problems) and code complication (no if..else
statement is required for choosing a problem specific operation), and we create
a program which complies with the Open-Closed Principle (“software entities should

class SA:

 def __init__(self, problem, T=10, Tmin=0.1, r=0.9, L=5):
 self.T, self.Tmin, self.r, self.L = T, Tmin, r, L
 self.problem = problem

 def run(self):
 s = self.problem.generate_initial_solution()
 obj = self.problem.calculate_objective(s)
 best_s, best_obj = s, obj
 ...

class P1:
 def __init__(self, n=4, m=2, p=[2, 2, 3, 1]):
 self.n, self.m, self.p = n, m, p
 ...

class P2:

 def __init__(self, n=3, p=[[4, 3, 1], [5, 1, 3]]):
 self.n, self.p = n, p
 ...

p1 = P1()
sa = SA(p1)
s, o = sa.run()
print('solution = {}, objective = {}'.format(s, o))

p2 = P2()
sa = SA(p2)
s, o = sa.run()
print('solution = {}, objective = {}'.format(s, o))

>>> solution = [0, 0, 1, 1], objective = 4
>>> solution = [2, 1, 0], objective = 7.333333333333333

20

Using Template Method and Strategy Design Patterns in the Python …

be open for extension but closed for modification” [8]). Namely, to deal with a new
problem, the program should be extended by a new subclass representing this prob-
lem (either a subclass of SA in case of the Template Method or a subclass of P in
case of the Strategy based design). No modification of the existing code is needed.
Moreover, a program applying the Strategy pattern can be extended by a new me-
taheuristic generating and evaluating neighbor solutions, e.g. a tabu search algorithm
[11], without changing classes P1 and P2.

So, the design of a program, in which a metaheuristic solves several optimization
problems, can be considerably improved by using either the Template Method or the
Strategy design pattern. However, these two patterns do not solve all the difficulties
that may arise in such situation. A metaheuristic, to be successful with concrete real-
life problems, usually requires some final tuning. For example, we may want to test
different schemes for determining initial and neighbor solutions (such operations are
often performed by some specialized algorithms). The considered design patterns do
not provide much flexibility for such tuning task. It requires a separate class (sub-
class) for each combination of the tested schemes which may lead to a great number
of subclasses and make testing and maintenance of the program quite difficult.

4. Final remarks

In this paper, we have shown in which ways the Template Method and Strategy pat-
terns can improve the design of the program solving several different optimization
problems by means of a metaheuristic algorithm. Several implementation examples
written in the Python programming language have also been provided.

Literature

[1] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns. Elements of

Reusable Object-Oriented Software, Addison-Wesley, Boston 2003.
[2] Freeman E., Robson E., Sierra K., B. Bates, Head First Design Patterns,

O’Reilly Media, Sebastopol-Boston 2009.

21

Ewa Figielska

[3] Martin R.C., Martin M., Agile Principles, Patterns and Practice in C#, Pren-
tice Hall, Upper Saddle River 2006.

[4] Kasampalis S., Mastering Python Design Patterns, Packt Publishing, Bir-
mingham 2015.

[5] Phillips D., Giridhar Ch., Kasampalis S., Python: Master the Art of Design
Patterns, Packt Publishing, Birmingham 2016.

[6] Summerfield, M., Python in Practice, Addison-Wesley, Boston, 2014.
[7] Gamma, E., Helm R., Johnson R., O'Brien L., Design patterns 15 years later,

http://www.informit.com/articles/article.aspx?p=1404056 [Online access:
November, 2017).

[8] Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E.,
Equation of state calculations by fast computing machines, “Journal of Chem-
ical Physics” 21 (6), pp. 1087-1092, 1953.

[9] Błażewicz J., Cellary W., Słowiński R., Węglarz J., Badania operacyjne dla
informatyków, Wydawnictwa Naukowo-Techniczne, Warszawa, 1983.

[10] Hunt A., D. Thomas, “The Pragmatic Programmer: From Journeyman to Mas-
ter”, Addison-Wesley, Boston, 1999.

[11] Glover, F., Tabu search – part 1, “ORSA Journal of Computing” 1, pp. 190-
206, 1989.

22

