
Zeszyty Naukowe WWSI, No 25, Vol. 15, 2021, pp. 57-67
DOI: 10.26348/znwwsi.25.57

3D Medical Segmentation Visualization in Julia with MedEye3d

Jakub Mitura* 1 and Beata E. Chrapko2

1Medical University of Lublin
2Chair and Department of Nuclear Medicine, Medical University of Lublin

Abstract

MedEye3d is a Julia language package designed to simplify visualizations of seg-
mentation in three dimensional setting. Motivation to develop this application
was to provide to rapidly growing Julia language scientific community tool for
research in three dimensional medical images. Package is based on multiple open
source software packages, yet most prominent is utilization of OpenGl specifi-
cation to enable GPU acceleration. Application was tested both on Linux and
Windows platforms and in both cases latency observed by the user in most com-
mon interaction like scrolling, annotation and change of displayed plane was very
small. Thanks to utilization of many modern packages and methodologies de-
veloped package is providing convenient visualization in rapid prototyping with
medical image segmentation algorithms. Application also is easily extendable
and will be included in medical image segmentation framework that is currently
in development.

Keywords — OpenGl, Computer Tomagraphy, PET/CT, medical image annotation, medical
image visualization

1 Introduction

Image segmentation in the medical domain has multiple use cases. Most importantly it enables
delineation of physiological and pathological structures, in order to confirm or reject some di-
agnostic hypothesis. In case of all segmentation problems, a very important step in evaluation
of the segmentation algorithm output is visual inspection. Such inspection enables researchers
that are responsible for creating and or evaluating developed algorithms to easily spot prob-
lems, and compare different algorithms in more detailed ways than can be achieved by usage of
segmentation metrics alone. However in order for such in development visual evaluation to be
useful it needs to meet some usage criteria:

*E-mail: jakub.mitura14@gmail.com

Manuscript received August 30, 2021 57



Jakub Mitura, Beata E. Chrapko

• It needs to be easily integrable to the programming language and libraries used by re-
searchers.

• Performance of the tool must be adequate in order to suit the iterative process of algo-
rithm development and refinement.

• Representation accuracy must be sufficient for the task at hand. It should not require
an excessive amount of computational resources, in order to minimize its influence on
running algorithms.

• Support for in memory data structures (arrays) should be convenient.

• Needs to provide possibility of simple manual annotations, on given mask and ability to
control visibility and visual representation of given mask.

• Should provide also the possibility to display some metadata in text format like segmen-
tation metrics for example Dice score [1].

• Ideally it should be also open source and well documented in order to enable users to
modify it according to the task at hand.

In order to address all of those issues in the medical domain and Julia language ecosystem the
described below package was developed.

2 Related software

There are already multiple applications providing the possibility to open and visualize medical
data like computer tomography scans like for example Amide [2] and 3D Slicer [3]. These
tools provide feature rich, mature and performant medical image visualization, yet to the best
knowledge of the author none of them provides any inbuilt integration with Julia language [4].
Although it is possible to easily call either Python or C functions from Julia such usage leads
to some performance penalty, and makes visualization tool modification and debugging highly
inconvenient.

Another problem common for many of present tools is slow start up time related to added
multiple features, that are important in precise diagnosis and annotation by clinicians, but are
not so important in case of rapid development phase, the same qualities also frequently leads to
extensive usage of computational resources what leads to problems in visualize the algorithm
progress when it is running.

Further problems may arise in case the user tries to visualize data stored in arrays, passed
directly from program in development rather than files of appropriate characteristics.

3 Package goal and contribution to the research community

Important practical question remains whether development in Julia language has any benefits
over using more established languages and tools. First Julia language is posed to solve the
two language problem, where rapid prototyping with dynamic language like Python needs to

58



3D Medical Segmentation Visualization in Julia with MedEye3d

be translated later to highly performant language like C++. From the practical perspective of
the user of the developed tools it leads to many problems with compatibility between different
software packages and tools. This problem in the Julia language ecosystem is highly limited
because of both some design choice, well developed package manager, and relatively young
code bases that limits the amount of the legacy code. Because of it and the multitude of research
oriented packages that span most areas of engineering and mathematics implementing or using
nearly all popular algorithms in vast majority of settings is greatly simplified. As a response
to the limitations of existing tools in a very specialized use case for visualization in the rapid
development phase of algorithm development in the Julia language, MedEye3d was developed.

4 Material methods and Experiments

Multiple freely available software packages were used in implementation. Most of the graph-
ics display is controlled by OpenGL [5], with some julia helper libraries like ModernGl [6],
FreeTypeAbstractions [7], Glutils [8]. Rocket.jl [9] (reactive functional package) was used to
manage user Interaction. In order to increase productivity multiple utility packages were used
like Dictionaries.jl [10], Parameters.jl [11], Setfield.jl [12], Match.jl [13]. In order to provide
a simpler way of package modifications, the DrWatson.jl [14] package is used throughout the
program. Program was developed using Julia 1.6 on both Ubuntu and Windows systems by a
single developer in publicly available GitHub repository.

All experiments were conducted on two machines Windows PC (10th Generation Intel Core
i9 processor, GeForce RTX 3080) and Ubuntu laptop (9th generation Intel Core i7 processor,
GeForce GTX 150). The goal of utilizing two different software and hardware setups was to
prove possibility of utilizing the package in most frequent configurations. Datasets utilized
in experiments originated from publicly available dataset for CT scan SILVER07 dataset [15]
(example of displayed data can be seen on Figure 1), and from Head-Neck-PET-CT (Positron
Emission Tomography with Computer Tomography) dataset from Cancer Imaging Archive [16].
Because of the asynchronous nature of execution of many parts of the algorithm and different
resource utilization by other running tasks the results may vary. In order to measure actual time
to render the GPU synchronization was performed using OpenGl glFinish() function. Cross
Section plane translation is defined as changing the single coordinate which defines the plane
in the chosen cross section. Time needed to accomplish it is measured in milliseconds between
rendering commands using BenchamrkTools.jl [17].

Response to mouse left click time was measured as a difference of time reported in the call-
back registered to GLFW window and end of the execution of a rendering command designed
to render the visible change on the chosen texture.

Time required for cross section plane change (for example from transverse to sagittal) was
defined as a difference in time from invocation of GLFW callback (which itself will be invoked
on appropriate user interaction) to end of rendering function execution. Results of experiments
mentioned above are summarized in Figure 2. What is clearly visible time required for comple-
tion of functions in case of the Ubuntu laptop was longer, yet considering far inferior hardware
characteristic it was to be expected, also reduced performance did not affected user experience.

59



Jakub Mitura, Beata E. Chrapko

Figure 1: Transverse image, soft tissue window CT scan and gold standard liver seg-
mentation

Memory usage was tested using actual data from PET/CT. Data uploaded to display consti-
tuted 3 Matricies of Float32, UInt8 and Int16 dataTypes, additionally 2000x8000 matrix hold-
ing text data was displayed. In case of Windows 10 system Dedicated GPU memory usage was
evaluated using Details section of Task Manager and was oscillating between between 38K and
39.5K. In case of Ubuntu Laptop application used to estimate GPU memory usage was Nvidia
System Monitor and dedicated GPU memory usage oscillated around 21MB.

60



3D Medical Segmentation Visualization in Julia with MedEye3d

Figure 2: Execution times depending on function and machine used

5 Discussion

In order to address all of the criteria set in the introductions that are needed to met the goal
of this package specific design choices were made. First requirement of integrability to the
programming language and libraries used by researchers is obviously satisfied for Julia language
users as the package is fully written in Julia code.

In order to provide sufficient performance rendering is done with GPU acceleration thanks
to OpenGL [5]. Thanks to contiguous memory allocation of Julia arrays there is little or no need
of preprocessing data before sending it to GPU memory. In order to minimize memory require-
ment but at the same time take advantage of fast texture GPU memory all binary mask data is
stored and sent to GPU as an unsigned bytes array. Fast asynchronous user input processing
is achieved thanks to reactive functional architecture implemented with help of Rocket.jl [9]
package.

As most algorithms in digital processing can be accelerated on GPU it is of paramount
importance to reduce GPU memory consumption by the viewer. This goal was achieved by
minimizing data required by the given texture using minimal size integer or floating point tex-
tures (avoiding RGB textures), and sending to the GPU only a single slice (2 dimensional matrix
form 3 dimensional image). The last decision may in some cases reduce the speed of switching
between slices, yet in most cases it will not lead to change visible for the user. Another decision
that limits resource usage and that fits well to the goal of this package is complete lack of the

61



Jakub Mitura, Beata E. Chrapko

Figure 3: Transverse image, soft tissue window only CT scan

graphical user interface – all interactions are either mouse interactions with the image itself or
controlled by keyboard shortcuts. All functions can be also invoked via, for example, the REPL
interface.

In order to represent 3D medical images properly some typical for this domain problems
need to be addressed. First In order for the image viewer to be fully functional it needs to en-
able visualization of the medical image in coronal, sagittal and transverse planes. In case of
the transverse plane it usually does not require much modifications, yet because of the variable
thickness of slices, visualization in the coronal and sagittal plane needs some adjustment which
is addressed in this package by dynamically setting vertices positions which are defining rect-
angular surface for texture display. Hence the height to width ratio that can be inferred from
medical image metadata (voxel dimensions) will be preserved.

Data structures used in the described package are operating on arrays themselves or in
order to reduce memory usage on their views. As OpenGl is characterized by some specific
data types the package has mechanisms to automatically infer the optimal OpenGl types needed
for a texture at hand on the basis of supplied Julia type.

62



3D Medical Segmentation Visualization in Julia with MedEye3d

Although purposefully no graphical user interface was developed, multiple keyboard and
mouse interactions were developed. In order to increase ease of interaction each texture with
which we wish to interact with needs to have some associated number. Using the mentioned
number then we can set this mask to invisible by pressing Ctrl + number or visible by Shift +
number. Example is visible in Figure 3. where only CT data is visible.

We can also define the difference between two masks which will show us the pixels where
value in one maskA is bigger then in mask B. Activating the view of this difference is done by
pressing Shift + maskA number + ”m” + maskB number, analogically when we want to make
this mask invisible we just need to press Ctrl + ”m”. Example visible in Figure 4 where mask
we evaluated cover bigger area than gold standard (visible in Figure 1), only difference pixels
are displayed. In order to activate fast scrolling ”f” needs to be pressed and in order to return
to slower scrolling ”s”.

In order to annotate given mask we activate it to be modified by pressing Alt+number. We
set the integer value that will be set to this mask by pressing Tab+number, default value is 1.
In order to erase value we can just set value to 0. Value chosen as a new value for pixels where
the user would click will be seen at the bottom of the text panel. Then we can add chosen
integer values to the mask by just left click and drag. In order to controll the area of the surface
annotated surface related to single pixel point (where user clicked) we can use Tab + ”+” or
Tab + ”–”. Such operation will modify the underlying 3 dimensional data in the slice we are
currently on.

Thanks to the ability of setting different numbers in a mask we get a simple way of dis-
cerning separate structures of the same type (all are in the same mask) but different instances
(different numbers set onto those masks). Other possibilities to use this system also exist. Fur-
ther processing like for example defining volume from annotated points (for example using
convex hull algorithms) is on a user side, as it may mean multiple things – surface, volume,
marking artifact, saving point for further reference and for example expert consultation etc.

In order to change the plane of view (transverse, coronal, sagittal) we press Space + 1 or 2
or 3 depending on the dimension that we want the plane to be in (example of transverse plane
display can be seen on Figure 5). For display different window (bone, soft tissue, lungs) we can
press F1, F2, F3.

Keys F4 and F5 with combination of ”+” and ”–” signs are used to increase or decrease
given threshold. In case of continuous colors it will clamp values – so all above max will
be equaled to max, and min if smaller than min. In case of main CT mask – it will control
minimum voxel value where it is displayed as white and maximum voxel value when it is shown
as black (for standard windows we can just use F1, F2, F3). In case of masks with single color
associated we will use step functions so if data is outside the range it will return 0 – so will not
affect display.

Metadata like segmentation metrics (like Dice, Jaccard etc. scores) [1] can be assigned to
the whole three dimensional scrolling data and to each slice, given data will be presented in the
text panel on the right. In case of the data associated with the whole data it will be displayed
constantly on the top, slice defined data only when a given slice is displayed. Additionally some
data related to current action like pointing to what number is used in manual modifications will
be displayed at the bottom.

63



Jakub Mitura, Beata E. Chrapko

Figure 4: Transverse image, soft tissue window, only difference between masks

6 Conclusions and further developments

Developed package can be a useful tool in setting the rapid development of medical image
segmentation. It is not intended as a replacement to already developed software tools, but
a useful addition in the setting mentioned above. In order to maximize the usability in the
rapid development setting multiple design decisions were made like independence from file
system, GPU acceleration with limiting GPU memory usage, possibility of very simple yet
expressive annotation and control system. Tool is also fully controllable from the code enabling
any automatization that would be useful to the user.

MedEye3d is intended as a part of a bigger framework developed by the author that in-
cludes, segmentation evaluation package, data persistence package (using HDF5 filesystem),

64



3D Medical Segmentation Visualization in Julia with MedEye3d

Figure 5: transverse Display FDG PET/CT

and segmentation pipeline package (which will connect all mentioned elements in coherent
framework). All packages are developed in Julia, and are in the early development phase at
the time of writing. MedEye3d package is intended to be lightweight, yet in case of features
requests those will be provided if possible, most further work is intended to be in optimization
understood as increased responsiveness and reduced computational resources demand.

65



Jakub Mitura, Beata E. Chrapko

Acknowledgement

The package is open source and available on GitHub1 under the Apache license. Thorough
documentation of all present functions was developed, and examples presented in the readme
section of GitHub repository. In case of any feature request, bug reporting, contribution propo-
sitions contact the author via LinkedIn2 or in the issues section of GitHub repository. Video
tutorial representing usage and code structure (to enable custom modifications by the user) was
published via YouTube and embedded in GitHub readme file3.

References

[1] J. Bertels, T. Eelbode, M. Berman, D. Vandermeulen, F. Maes, R. Bisschops, and
M. B. Blaschko, “Optimizing the Dice Score and Jaccard Index for Medical Image
Segmentation: Theory and Practice,” in Medical Image Computing and Computer Assisted
Intervention – MICCAI 2019, D. Shen, T. Liu, T. M. Peters, L. H. Staib, C. Essert, S. Zhou,
P.-T. Yap, and A. Khan, Eds. Cham: Springer International Publishing, 2019, pp. 92–100.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-32245-8 11

[2] A. M. Loening and S. S. Gambhir, “AMIDE: A Free Software Tool for Multimodality
Medical Image Analysis,” Molecular Imaging, vol. 2, no. 3, pp. 131–137, 2003. [Online].
Available: https://doi.org/10.1162/15353500200303133

[3] R. Kikinis, S. D. Pieper, and K. G. Vosburgh, 3D Slicer: A Platform for Subject-Specific
Image Analysis, Visualization, and Clinical Support. New York, NY: Springer New York,
2014, pp. 277–289. [Online]. Available: https://doi.org/10.1007/978-1-4614-7657-3 19

[4] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to
numerical computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017. [Online]. Available:
https://doi.org/10.1137/141000671

[5] M. Woo, J. Neider, T. Davis, and D. Shreiner, OpenGL programming guide: the official
guide to learning OpenGL, version 1.2. Addison-Wesley Longman Publishing Co., Inc.,
1999.

[6] SimonDanisch, rennis250, and o jasper, “ModernGL.jl,” 2021. [Online]. Available:
https://github.com/JuliaGL/ModernGL.jl

[7] SimonDanisch and aaalexandrov, “FreeTypeAbstraction.jl,” 2021. [Online]. Available:
https://github.com/JuliaGraphics/FreeTypeAbstraction.jl

[8] jorge brito, “Glutils.jl,” 2021. [Online]. Available: https://github.com/jorge-brito/Glutils.jl

[9] D. Bagaev, “Rocket.jl,” 2021. [Online]. Available: https://github.com/biaslab/Rocket.jl

1https://github.com/jakubMitura14/MedEye3d
2https://linkedin.com/in/jakub-mitura-7b2013151/
3https://youtu.be/tv7-nGiik-w

66

https://link.springer.com/chapter/10.1007/978-3-030-32245-8_11
https://doi.org/10.1162/15353500200303133
https://doi.org/10.1007/978-1-4614-7657-3_19
https://doi.org/10.1137/141000671
https://github.com/JuliaGL/ModernGL.jl
https://github.com/JuliaGraphics/FreeTypeAbstraction.jl
https://github.com/jorge-brito/Glutils.jl
https://github.com/biaslab/Rocket.jl
https://github.com/jakubMitura14/MedEye3d
https://linkedin.com/in/jakub-mitura-7b2013151/
https://youtu.be/tv7-nGiik-w


3D Medical Segmentation Visualization in Julia with MedEye3d

[10] A. Ferris, “Dictionaries.jl,” 2021. [Online]. Available: https://github.com/andyferris/
Dictionaries.jl

[11] Mauro, “Parameters.jl,” 2021. [Online]. Available: https://github.com/mauro3/
Parameters.jl

[12] J. Weidner, “Setfield.jl,” 2021. [Online]. Available: https://github.com/jw3126/Setfield.jl

[13] K. Squire, “Match.jl,” 2021. [Online]. Available: https://github.com/kmsquire/Match.jl

[14] G. Datseris, J. Isensee, S. Pech, and T. Gál, “DrWatson: the perfect sidekick for your
scientific inquiries,” Journal of Open Source Software, vol. 5, no. 54, p. 2673, 2020.
[Online]. Available: https://doi.org/10.21105/joss.02673

[15] T. Heimann, B. van Ginneken, and M. Styner, “SILVER07,” 2021. [Online]. Available:
http://www.sliver07.org/

[16] M. Vallieres, E. Kay-Rivest, L. J. Perrin, X. Liem, C. Furstoss, H. J. W. L. Aerts,
N. Khaouam, P. F. Nguyen-Tan, C.-S. Wang, K. Sultanem et al., “Radiomics strategies
for risk assessment of tumour failure in head-and-neck cancer,” Scientific reports, vol. 7,
no. 1, pp. 1–14, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-10371-5

[17] J. Revels, “BenchmarkTools.jl,” 2021. [Online]. Available: https://github.com/JuliaCI/
BenchmarkTools.jl

67

https://github.com/andyferris/Dictionaries.jl
https://github.com/andyferris/Dictionaries.jl
https://github.com/mauro3/Parameters.jl
https://github.com/mauro3/Parameters.jl
https://github.com/jw3126/Setfield.jl
https://github.com/kmsquire/Match.jl
https://doi.org/10.21105/joss.02673
http://www.sliver07.org/
https://doi.org/10.1038/s41598-017-10371-5
https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/JuliaCI/BenchmarkTools.jl

	Introduction
	Related software
	Package goal and contribution to the research community
	Material methods and Experiments
	Discussion
	Conclusions and further developments

