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Abstract

Medical segmentation metrics are crucial for development of correct segmentation
algorithms in medical imaging domain. In case of three dimensional large arrays
representing studies like CT, PET/CT or MRI of critical importance is availabil-
ity of library implementing high performance metrics. MedEval3D is created in
order to fulfill this need thanks to implementation of CUDA acceleration. Most
of implemented metrics like Dice coefficient, Jacard coefficient etc. are based
on confusion matrix, what enable effective reuse of calculations across multiple
metrics improving performance in such use case. Additionally algorithms like in-
terclass correlation and Mahalanobis distance are also introduced. In both cases
their implementations are significantly faster then their counterparts from other
available libraries. Lastly programming interface to all of the metrics was created
in Julia programming language.
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1 Introduction

In order to evaluate performance of any algorithm one need to define appropriate metric. In the
field of medical segmentation arguably most influential works describing segmentation metrics
were those published by Renard et al [1] and by Taha and Hanbury [2]. Those works stressed
that optimal metric may be different depending on the problem, hence pointing out the need of
a tool that would implement whole set of metrics.

The goal of this package is to implement CUDA accelerated framework independent met-
rics that are suggested in most influential works, and create interface in Julia programming
language to give scientific community of researchers working on medical segmentation access
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on rapidly growing environment of scientific computing in Julia language. Additionally the pre-
sented package is part of the bigger medical segmentation framework developed by the author
[3].

Currently in the subfield of machine learning concentrated around medical imaging there
are two main frameworks Pymia [4] and Monai [5], in both cases user interface is written in
Python. Monai [5] implements multiple highly optimized metrics that are particularly prevalent
in case of neural networks with available CUDA acceleration, yet lacks most of those described
in [2]. It is also based on PyTorch [6]. Pymia [4] implements all of the algorithms described in
[2], is framework independent, but lacks GPU acceleration. GPU acceleration can drastically
increase performance in case of large data objects − and such case is very common in modern
medical imaging.

2 Preliminaries

In the section below there are presented mathematical formulas that were used in implemented
algorithms, and are borrowed from the work of Taha and Hanbury [2].

2.1 Notation

[ ] − represents empty list, if not stated otherwise lists
are 1 indexed (not 0 − indexed);

X = x1..., xn − set of all voxels representing single image (for ex-
ample CT image), where |X| = w ∗ h ∗ d = n and
w, h, d represents width, height and depth;

Sg = S1
g , S2

g − ground truth segmentation of X .;
St − segmentation of X that one is comparing with

ground truth segmentation;
f i
g(x) − membership function that given a voxel xi return

value marking its membership;
S1, S2 if not stated otherwise S1 − is class of interest for example representing organ of

interest and S2 is background;
TP − true positive;
FP − false positive;
FN − false negative;
TN − true negative;
MI − Mutual Information;
P − the set of 2 element tuples that represent all possible

object pairs in X ×X;
ICC − Interclass Correlation;
KAP − Cohen Kappa Coefficient;
MHD − Mahalanobis Distance.
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2.2 Binary classification

In case of binary classification metric we calculate the TP , FP , FN and TN as shown in [2]:

mij =

|X|∑
r=0

f i
g(xr)f

j
t (xr) (1)

In the formula above TP = m11, FP = m10, FN = m01 and TN = m00. Function f i
g(x)

is a membership function that given a voxel xi provides a label understood as membership to a
set representing a given class (for example background class and object class). In case of binary
classification f I

g (x) = 1 iff x ∈ Si
g and if x ∈ Sj

g f i
g(x) = 0.

2.3 Dice coefficient

Dice coefficient is one of the most widely used overlap based metrics [2], and is calculated in
[2] as seen in equation:

DICE =
2TP

2TP + FP + FN
(2)

2.4 Jacard coefficient

Jacquard coefficient is similar to Dice Coefficient yet it is always larger than Dice apart from
extremum of 1 and 0 value where they are equal as we can see from the following equation:

JAC =
TP

TP + FP + FN
(3)

2.5 Global consistency error

Let R(S, x) is set of all voxels in the same segmentation region S as voxel x. For two segmen-
tations St and Sg we can define how similar they are using equations:

GCE(St, Sg) =
1

n
min

(
n∑
i

E(St, Sg, xi),
n∑
i

E(Sg, St, xi)

)
, (4)

where E is defined in [2] in equation:

E(St, Sg) =
|R(St, x)/R(Sg, x)|

|R(St, x)|
(5)

GCE can be also defined as shown in [2] in equation below.

GCE =
1

n
min (A,B) , (6)
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where A and B are auxiliary variables:

A =
FN(FN + 2TP )

TP + FN
+

FP (FP + 2TN)

FP + TN
, (7)

B =
FP (FP + 2TP )

TP + FP
+

FN(FN + 2TN)

TN + FN
. (8)

2.6 Volume based metrics

This type of metric is measuring differences in volumes, which is particularly important in
3d studies such as for example CT scan. Volumetric similarity was defined in [2] as seen in
equation:

V S = 1−
∥∥|S1

t | − |S1
g |
∥∥

|S1
t | − |S1

g |
= 1− |FN − FP |

2TP + FP + FN
(9)

2.7 Pair counting based metrics

Given all possible voxel pairs in set P (xi, xj) ∈ P we can divide those in 4 groups:

Group I − xi and xj are given the same label in both segmentations that we are com-
paring (usually it would be gold standard and algorithm on which one is
working).

Group II − xi and xj have the same labels in segmentation Sg but different in St.
Group III − xi and xj have the same labels in segmentation St but different in Sg .
Group IV − xi and xj have different labels in both St and Sg .

Group I and IV represents agreement between segmentations and Groups II and III disagree-
ment.

As presented in [2] there is an algorithm that prevents the need to analyze all of the point
pairs and enable calculation of binary classification metric using TP , TN , FP and FN .

a =
1

2
[TP (TP − 1) + FP (FP − 1) + TN(TN − 1) + FN(FN − 1)] (10)

b =
1

2
[(TP + FN)2 + (TN + FP )2 − (TP 2 + TN2 + FP 2 + FN2)] (11)

c =
1

2
[(TP + FP )2 + (TN + FN)2 − (TP 2 + TN2 + FP 2 + FN2)] (12)

d =
n(n− 1)

2
− (a+ b− c) (13)

In the expression (13, n is the number of all possible pairs of points, hence n = |P |.
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2.7.1 Adjusted Rand Index

Adjusted Rand Index [7] is a modification of Rand Index [8], and can be used as a metric for
fuzzy segmentation. Equation (14) is presenting calculation of Adjusted Rand Index (ARI):

ARI =

∑
ij

(
mij

2

)
−

∑
i (

mi
2 )

∑
j (

mj
2 )

(n2)

1
2

[∑
i

(
mi

2

)
+
∑

j

(
mj

2

)] ∑
i (

mi
2 )

∑
j (

mj
2 )

(n2)

(14)

In the equation (14) n is the object count and mij is confusion matrix.
Another way to calculate the ARI is presented in [2] in equation which is based on equations

(10)−(13):

ARI =
2(ad− bc)

c2 + b2 + 2ad+ (a+ d)(c+ b)
. (15)

2.8 Information theoretic based metrics

Information theoretic based metrics are based on a notion of Entropy and mutual information
from information theory. Mutual information (MI) in case of the image segmentations is defined
in [2] as follows in equation:

H(S1, S2) = −
∑
ij

p(Si
1, S

j
2) log p(S

i
1, S

j
2) (16)

In the equation above p(x, y) is joint probability. The equation (16) can be also represented in
terms of TP , FP , TN and FN as shown in [2] in the following equations:

p(S1
g) = (TP + FN)/n (17)

p(S2
g) = (TN + FN)/n (18)

p(S1
t ) = (TP + FP )/n (19)

p(S2
t ) = (TN + FP )/n (20)

N = TP + FP + TN + FN (21)

p(Si
1, S

j
2) =

|Si
1 ∩ Si

2|
n

(22)

p(S1
1 , S

1
2) =

TP

n
(23)

p(S1
1 , S

2
2) =

FN

n
(24)

p(S2
1 , S

1
2) =

FP

n
(25)

p(S2
1 , S

2
2) =

TN

n
(26)
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2.9 Probabilistic metrics

2.9.1 The Interclass Correlation

The Interclass Correlation (ICC) in the context of segmentation is defined in [2] as in equation
below:

ICC =
σ2
S

σ2
S + σ2

ϵ

(27)

In the equation above σS is variance caused by differences between segmentations and σϵ de-
notes variance caused by differences between the points in the segmentations. In practice as
shown in [2] the ICC can be calculated using equations:

ICC =
MSb −MSw

MSb + (k − 1)MSw
, (28)

where MSb is representing mean squares between segmentations and MSw denotes mean
square within the segmentations:

MSb =
2

n− 1

∑
x

(m(x)− µ)2, (29)

MSw =
1

n

∑
x

(fg(x)−m(x))2 + (ft(x)−m(x))2. (30)

2.9.2 Cohen Cappa

Cohen Kappa Coefficient (KAP) is a measure o agreement between the samples that takes
chance into account. It can be calculated as shown in [2] as in equations:

KAP =
Fa − Fc

N − Fc
, (31)

where:
N is the number of voxels,
Fa = TP + TN ,
Fc =

1
N · ((TN + FN)(TN + FP ) + (FP + TP )(FN + TP )).

2.10 Spatial distance based metrics

Mahalanobis Distance takes into account correlation of all points in the point cloud, and is
calculated as shown in [2] in equations:

MHD(X,Y ) =
√

(µx − µy)TS−1(µx − µy) (32)
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Algorithm 1: Calculating TP , FP , FN , TN

1 boolGold = goldGPU[i]==numberToLookFor
2 boolSegm = segmGPU[i]==numberToLookFor
3 x= threadIdxX()
4 y = threadIdxY()
5 z = (boolGold & boolSegm + boolSegm +1)
6 shmemblockData[x,y,z] +=(boolGold — boolSegm)

In this equation µx, µy are means of point clouds X , Y that represents segmentations that we
compare. Covariance matrix S is calculated as weighted matrix:

S =
n1S1 + n2S2

n1 + n2
, (33)

where S1 and S2 constitutes covariance matrices of voxel sets and n1 and n2 represents number
of voxels in each set.

3 Data preparation

Programming model is based on the two phase metric evaluation:

• First phase is invoked as a preparation step in order to calculate variables that are con-
stant across kernel given image array dimensions. Those constants include thread block
dimensions and number of required thread blocks to optimize occupancy using Occu-
pancy API. Other constants are mainly related to precalculation of loop sizes and ap-
propriate GPU memory allocations. Preparation step is designed to be invoked once for
each dataset and can be potentially cached and reused given image array type and GPU
hardware will not change.

• Second phase is invoked with an image array and gold standard segmentation together
with variables calculated in the preparation step. Additionally to enable reliable calcu-
lation in multiple function invocations all data structures are set to initial values (ussu-
ally 0).

3.0.1 Algorithm to calculate TP , FP , FN and TN

In order to calculate most metrics that are presented below one needs to calculate TP , FP ,
FN and TN first. In order to be able to use the GPU acceleration the Algorithm 1 would be
used as a CUDA kernel applied to the ground truth and the algorithm output arrays. Each block
will iterate over number of elements that will be calculated as ceiled division of total number of
voxels with number of available thread blocks.
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Crucial part of the impementation is presented in Algorithm 1. To improve readability some
implementation details are omitted in case a reader would be intrested in them one is invited
to inspect the source code. Algorithm is executed inside the parallelized loop where i is linear
index and is calculated on the basis of the id of given thread and thread block.

Variable goldGPU is the GPU array holding gold standard segmentation, while segmGPU
is the array of the same dimensions but holding the output of a segmentation algorithm we want
to compare with gold standard. shmemblockData holds in shared memory sums of FN , FP
and TP , each thread has distinct 3 entries for each sum. Line 1 boolGold is true if in a given
location of goldGPU numberToLookFor can be found, analogically the same is stored for
segmGPU in boolSegm. goldGPU and segmGPU are accessed using linear index to sim-
plify contiguous memory access. Next the indexes for accesing shared memory are calculated
in line 3 and 4 indexes in x and y dimension are set to be identical as thread indicies in 2
dimensional thread block.

The equation boolGold&boolSegm+boolSegm+1 (line 5 ) will evaluate to 3 for TP , 2 for
FP and 1 for either FN or TN . However in case of the TN the equation (boolGold|boolSegm)
(line 6 ) will evaluate to 0 hence will not cause any change in FN count. Such way of accessing
the array will avoid branching statements which is important to increase performance in GPU
architectures. The sum of TN will be obtained in the end by subtracting from total number of
voxels sum of TP , FP and FN .

After completing above algorithm next step is reduction of accumulated values. Reduction
is achieved in 3 stages first warp level reduction, than shared memory reduction across thread
block and atomic reduction across all GPU. Such reduction algorithm is proven to be usually
most effective in reducing overall time of communications between threads.

On the basis of calculated above TP , FP , FN , TN and algorithms presented by Taha et
all [2] which are summarized in the appendix one can easily calculate multple metrics like Dice
Coefficient, Jaccard Coefficient, Global Consistency Error, Volume Metric, Rand Index,Kohen
Cappa, Mutual Information and Variation Of Information. Details of how to use exactly those
functions is described in the GitHub readMe file.

Last two described metrics Interclass Correlation and Mahalanobis distance needs separate
kernels in order to be calculated. However Interclass Correlation algorithm is similar to the
kernel described above, with the exception of using cooperative kernel methods (grid synchro-
nization) that will be described also below. Hence detailed explanation will not be presented.

3.0.2 Mahalanobis distance

All of the metrics described above are invariant to the location of non overlapping voxels − i.e.
it matters only how many voxels have the same or different labels in both of the arrays, but not
how they are distributed. Depending on the algorithm it may lead to severe misrepresentation
of actual algorithm performance. In order to remedy this one should take into account relative
positions of the voxels − and metrics that do it are called distance metrics. Most commonly
used distance metrics in case of medical image segmentations are Mahalanobis distance and
Hausdorff distance, the latter will be described in separate work.
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Algorithm 2: Calculating Mahalanobis distance
Data: goldGPU
Data: segmGPU
Data: numberToLookFor

1 boolGold = goldGPU[x,y,z]==numberToLookFor
2 boolSegm = segmGPU[x,y,z]==numberToLookFor

3 if boolGold then
4 addSumXYZGold()
5 end
6 if boolSegm then
7 addSumXYZSegm()
8 end
9 syncGrid()

10 if boolGold then
11 getVariancesAndCovGold()
12 end
13 if boolSegm then
14 getVariancesAndCovSegm()
15 end
16 syncGrid()

17 a = sqrt(varianceX)
18 b = (covarianceXY )/a
19 c = (covarianceXZ)/a
20 e = sqrt(varianceY − b2)
21 d = (covarianceY Z − (c ∗ b))/e
22 f = (meanXgold−meanXsegm)/a
23 g = (meanY gold−meanY segm)− b ∗ f)/e
24 h = (meanZgold−meanZsegm)−g∗d−f ∗c)/sqrt(varianceZ−c2−d2)

25 result = sqrt(f2 + g2 + h2)
26 return result

Mahalanobis distance is calculated based on covariance matrix of x, y, z coordinates of
points in both of the arrays as described in Algorithm 2:

• Line 1 and subsequent shows similarly like in previous algorithm defining Boolean val-
ues on the basis whether given entries in tested arrays are meeting our equality predicate.
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Figure 1: Comparison of median times needed to calculate given metrics in log scale,
for Monai only CUDA accelerated algorithm was taken into account. Dimensionality
of data was (512× 512× 826)

However in this case we are accessing arrays using x, y, z coordinates instead of linear
index.

• Line 3 − separately we need to increment number of voxels that meet set equality predi-
cate for both input arrays, and for all x, y and z coordinates separately. Those sums will
be later used to acquire means of x, y, z coordinates of voxels that meet predicate.

• Line 9 and 16 − syncGrid() is a function that synchronizes all of the threads on the
device.

• Line 10 − using means calculated above we calculate all of the entries needed to obtain
3 × 3 covariance matrix of x, y, z coordinates of voxels that meet predicate. Hovewer
becouse of the fact that covariance matrix is symmetric number of calculated variables is
smaller than number of entries in the covariance matrix of interest

Original calculation as shown in [2] was shown as series of linear algebra operations that in-
cludes matrix inversion. In order to optimize the calculation authors had obtained the same
result by first doing Cholesky decomposition and then forward substitution. Both operations
were unrolled and specialized to the 3 × 3 covariance matrix. Specialized Cholesky decompo-
sition is seen from line 17 to 21 and forward substitution from line 22 to line 24.
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Table 1: Presentation of median times needed to calculate given metrics. Dimensional-
ity of data was (512× 512× 826)

MedEval3d [ms] Pymia [ms]

Dice Coefficient 52.8 2181.9
Jaccard Coefficient 52.9 2174.4

Global Consistency Error 52.7 2181.4
Volume metric 52.8 2172.4

Rand Index 52.0 2153.2
Interclass Correlation 67.7 14513.1

Kohen Cappa 52.0 2172.8
Mutual Information 52.8 2173.4

Variation Of Information 52.8 2188.0
all Conf metr based 51.8 2169.1

Mahalanobis Distance 101.8 5137.9

4 Experiments

All experiments were conducted on Windows PC (Intel Core I9 10th gen., GeforceRTX 3080),
and Data from CT-ORG [9] dataset, on image of size (512 × 512 × 826). Time needed to
calculate metrics was estimated in case of Julia code using BenchamrkTools.jl [10]. For testing
python libraries internal python module timeit was utilized. Results of experiments mentioned
above are summarized in Figure 1, and in Table 1. In all cases data was already in RAM memory
for CPU computation or in GPU memory for CUDA computations − hence memory transfer
times were not included.

As visible in the implementation of CUDA acceleration of described package in most cases
led to from 40 up to 214 times shorter execution times. The only exception is in case of CUDA
accelerated Monai Dice metric algorithm MedEval3D is slower (24.1 ms vs 52.8 ms). However
from all of the metrics described Monai implements only Dice metric, although admittedly most
of others could be potentially calculated from Monai confusion matrix. What is also worth
pointing out is a field in a table named ”all Conf metr based” this tested calculating all of the
metrics jointly apart from interclass correlation and mahalanobis distance − time of execution
in such case both in case of MedEval3d and Pymia algorithms was similar to calculation of
just one of those metrics. This can be explained by the fact that in all of those cases the most
computation intensive work is related to calculation of confusion matrix, and this calculation is
reused in both packages between diffrent metrics.
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5 Conclusions

As clearly visible in performed experiments CUDA accelerated algorithm gives vast perfor-
mance improvement, comparing to the state of the art CUDA algorithm provided by Monai
[5], MedEval3D did not lead to any improvements. However in case of most metrics described
in [2],to the best knowledge of the author there are no easy to use CUDA accelerated metrics
implementations, and in this cases current work brings vast increases in performance, with ad-
ditional benefit of providing interface in rapidly growing in popularity Julia [11] programming
language.
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