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Abstract

Much of the literature on multi-agent coalition formation has focused on Characteristic
Function Games, where the effectiveness of a coalition is not affected by how the other
agents are arranged in the system. In contrast, very little attention has been given to the
more general class of Partition Function Games, where the emphasis is on how the formation
of one coalition could influence the performance of other co-existing coalitions in the system.
However, these inter-coalitional dependencies, called externalities from coalition formation,
play a crucial role in many real-world multi-agent applications where agents have either
conflicting or overlapping goals.

Against this background, this paper is the first computational study of coalitional games
with externalities in the multi-agent system context. We focus on the Coalition Structure
Generation (CSG) problem which involves finding an exhaustive and disjoint division of the
agents into coalitions such that the performance of the entire system is optimised. While this
problem is already very challenging in the absence of externalities, due to the exponential size
of the search space, taking externalities into consideration makes it even more challenging
as the size of the input, given n agents, grows from O(2n) to O(nn).

Our main contribution is the development of the first CSG algorithm for coalitional
games with either positive or negative externalities. Specifically, we prove that it is possible
to compute upper and lower bounds on the values of any set of disjoint coalitions. Building
upon this, we prove that in order to establish a worst-case guarantee on solution quality it
is necessary to search a certain set of coalition structures (which we define). We also show
how to progressively improve this guarantee with further search.

Since there are no previous CSG algorithms for games with externalities, we benchmark
our algorithm against other state-of-the-art approaches in games where no externalities
are present. Surprisingly, we find that, as far as worst-case guarantees are concerned, our
algorithm outperforms the others by orders of magnitude. For instance, to reach a bound
of 3 given 24 agents, the number of coalition structures that need to be searched by our
algorithm is only 0.0007% of that needed by Sandholm et al. (1999), and 0.5% of that
needed by Dang and Jennings (2004). This is despite the fact that the other algorithms take
advantage of the special properties of games with no externalities, while ours does not.
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STreSzczenie
Większość literatury poświęconej formowaniu koalicji w systemach wieloagentowych po-

święcona jest funkcji charakterystycznej w teorii gier, gdzie na skuteczność danej koalicji nie rzu-
tuje to, w jaki sposób pozostali agenci rozlokowani są w systemie. Niewiele uwagi poświęca się 
natomiast bardziej ogólnej grupie gier o sumie statystycznej, gdzie nacisk kładzie się na to, jak 
stworzenie jednej koalicji może wpłynąć na wyniki innych, współistniejących koalicji w ramach 
danego systemu. Takie międzykoalicyjne zależności, zwane efektami zewnętrznymi przy tworze-
niu koalicji, odgrywają istotną rolę w rzeczywistych, wieloagentowych aplikacjach, i to zarówno 
w przypadku, gdy agenci mają nakładające się, jak i sprzeczne ze sobą cele. 

Mając powyższe na uwadze, artykuł ten jest pierwszym badaniem obliczeniowym doty-
czącym gier koalicyjnych biorącym pod uwagę efekty zewnętrzne w kontekście systemów wie-
loagentowych. Autorzy artykułu skupiają się na Problemie Generowania Optymalnej Struktury 
Koalicyjnej, który związany jest ze znalezieniem wyczerpującego i rozłącznego podziału agentów 
na koalicje, i który to podział pozwoli na optymalizację wydajności całego systemu. Problem ten 
i bez efektów zewnętrznych jest ogromnym wyzwaniem (ze względu na wykładniczy rozmiar prze-
strzeni poszukiwań), a branie pod uwagę efektów zewnętrznych jest jeszcze trudniejsze, ponieważ 
rozmiar danych wejściowych przy n-agentach rośnie od O(2n) do O(nn). Głównym wkładem auto-
rów artykułu jest wypracowanie pierwszego algorytmu do Generowania Optymalnej Struktury Ko-
alicyjnej dla gier koalicyjnych z pozytywnymi lub negatywnymi efektami zewnętrznymi. Autorzy 
udowadniają głównie to, że możliwe jest obliczenie górnych i dolnych granic wartości jakiegokol-
wiek zbioru koalicji rozłącznych. Opierając się na tym dowodzą, że po to, by ustalić najgorszą gwa-
rancję jakości rozwiązania konieczne jest poszukiwanie określonego zbioru struktur koalicyjnych 
(zdefiniowanego przez badaczy wcześniej). Autorzy artykułu pokazują, w jaki sposób stopniowo 
polepszyć tę gwarancję dalszymi poszukiwaniami. W przeszłości nie było żadnych algorytmów do 
Generowania Optymalnej Struktury Koalicyjnej dla gier koalicyjnych z efektami zewnętrznymi, 
autorzy odnoszą się więc do innych nowoczesnych podejść do gier, gdzie nie ma żadnych efektów 
zewnętrznych. Zadziwiające jest to, że w przypadku najgorszych gwarancji, algorytm stworzony 
przez autorów wyprzedza inne o rzędy wielkości. Dla przykładu, by osiągnąć związek 3 w przypad-
ku 24 agentów, liczba struktur koalicyjnych, którą należy przeszukać przez algorytm autorów arty-
kułu wynosi jedynie 0:0007% tego, co poprzez algorytm wypracowany przez Sandholma i innych 
(1999) oraz 0:5% tego, co poprzez algorytm Danga and Jenningsa (2004). Dzieje się tak, pomimo że 
inne algorytmy korzystają ze szczególnych właściwości gier bez efektów zewnętrznych, a których 
algorytm autorów artykułu nie wykorzystuje. 
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1. Introduction

The ability to create effective coalitions is one of the key goals of multi-agent systems re-
search. Coalitional games are models that capture opportunities for cooperation by explicitly
modeling the ability of the agents to take joint actions as primitives (Ieong and Shoham,
2006). In this context, one of the key challenges is to generate a coalition structure, i.e., an
exhaustive and disjoint division of the set of agents, such that the performance of the entire
system is optimised. This Coalition Structure Generation (CSG) problem has received much
attention in the multi-agent system literature (Shehory and Kraus, 1998; Sandholm et al.,
1999; Sen and Dutta, 2000; Dang and Jennings, 2004; Rahwan et al., 2009a).

To date, work on the CSG problem in the AI community has focused primarily on a
class of coalitional games known as Characteristic Function Games (CFGs), where the
effectiveness, or value, of a coalition is not affected by the way non-members are partitioned.
There are, however, many settings where this assumption does not hold. Such settings
are known as Partition Function Games, or PFGs (Lucas and Thrall, 1963). Specifically,
in PFGs a coalition’s value may be influenced by the formation of another coalition in
the system. For instance, given two coalition structures: CS = {C1, C2, C3} and CS ′ =
{C1, C2 ∪ C3}, the value of C1 may be different in CS than in CS ′ due to the merger of
C2 with C3. Such an effect is known as an externality from coalition formation and, in this
example, it is induced upon C1 by the merge of C2 and C3, which leads to the formation of
coalition C2 ∪ C3.

1

Games with externalities have been widely studied in economics and other social sci-
ences, where interdependencies between coalitions play an important role. Examples include
collusion in oligopolies, where cooperating companies seek to undermine the competitive
position of other firms in the market, as well as various forms of international (macroeco-
nomic/environmental) policy coordination between countries (Catilina and Feinberg, 2006;
Plasmans et al., 2006). For instance, when high-tech companies decide to cooperate in order
to develop a new technology standard, other companies lose some of their competitive po-
sition, i.e., they are subject to negative externalities. For instance, in the 1970’s, Japanese
firms established the Very Large Scale Integration (VLSI) consortium as well as the Fifth
Generation Computer Systems (FGCS) project (Yi, 2003). Another example is the decision
by one group of countries to reduce pollution, which has a positive impact on other countries
or regions, i.e., it induces positive externalities (see, e.g., Finus, 2003; Yi, 2003).

The issue of externalities is also becoming increasingly important in domains in which
multi-agent system techniques are applied. In e-commerce, for example, the British company,
Aerogistics2, enables small- and medium-size aircraft component manufacturers and service
providers to form online, ad hoc supply-chain coalitions to bid for manufacturing projects
too large for any individual participant. Since all components must ultimately conform to
the same standards, the cost of standarization procedures incurred by any coalition depends
on the number and structure of other winning coalitions.

In many multi-agent systems, negative externalities between a coalition and non-members
can be caused by sharing resources (Dunne, 2005; Sandholm et al., 1999). Thus, if agents,
after forming a coalition, consume more resources than before, then this means that fewer
resources are now available to the other coalitions. This is the case, for instance, in con-

1In the remainder of this paper we will refer to coalitional games as, simply, games, and to externalities
from coalition formation as, simply, externalities.

2See www.aerogistics.com for more details.
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gestion games (Oh, 2009). Negative externalities can also be caused by conflicting goals.
Intuitively, by satisfying its own goals, a coalition may actually move the world further from
the other coalitions’ goals (Rosenschein and Zlotkin, 1994). Conversely, overlapping or par-
tially overlapping goals may cause positive externalities as some coalitions may satisfy goals
of other coalitions (Sandholm et al., 1999).

In spite of so many important applications, very little attention has been given to the
computational aspects of games with externalities. In particular, there exist no algorithms
in the literature to solve the CSG problem in PFGs. To this end, it should be noted that
the space of possible solutions to the CSG problem is the same for both CFGs and PFGs,
with O(nn) solutions for n agents. The main difference, however, lies in the size of the input,
which is O(2n) for CFGs, but O(nn) for PFGs. This is because, for every coalition, the
input contains a single value — representing its performance — in the CFG case, while in
the PFG case it contains as many values as there are possible partitions of the agents outside
that coalition (see Section 2 for more details). This makes the CSG problem significantly
more challenging compared to the CFG case, which is already NP-complete (Sandholm
et al., 1999). In fact, it can easily be shown that for the general case of PFGs it is not
possible to solve the CSG problem without examining every possible coalition structure.
Intuitively, even if all but one have been examined, this last one may be arbitrarily better
than the rest.

Against this background, we focus on two important classes of PFGs:

• PFG+ — coalitional games with weakly positive externalities. In this class, external-
ities are always non-negative, i.e., the merge of any two coalitions is never detrimental
to other coalitions in the system.

• PFG− — coalitional games with weakly negative externalities. Here, all externalities
are non-positive, i.e., the merge of any two coalitions is never beneficial to other
coalitions in the system.3

It should be stressed that nearly all the examples of coalitional games with externalities that
are listed above belong to either one or the other class! Specifically, cartels, environmental
policy coordination between countries, and multi-agent systems with partially overlapping
goals are all games with positive externalities. That is, they belong to the class PFG+.
Conversely, collusion in oligopolies, exogenous coalition formation in e-market places, as
well as multi-agent systems with shared resources and/or conflicting goals all belong to the
PFG− class.

Our aim in this paper is to develop anytime techniques to solve the CSG problem in
PFG+ and PFG−, henceforth denoted PFG+/PFG−. To this end, an algorithm is deemed
“anytime” if it can return a solution at any point in time during its execution, and the quality
of its solution improves monotonically until termination. This is particularly desirable in
the multi-agent system context since the agents might not always have sufficient time to run
the algorithm to completion, especially when the search space of the problem at hand is of
exponential size. Moreover, being anytime makes the algorithm more robust against failure;
if the execution is stopped before the algorithm would have normally terminated, then it
would still provide the agents with a solution that is better than the initial solution, or any
other intermediate one.

3Throughout the paper, we will refer to weakly positive (negative) externalities as simply positive (neg-
ative) externalities.

3
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To this end, one of the major obstacles when developing algorithms for PFG+/PFG−

is how these algorithms can be tested/evaluated. This is significantly more challenging —
compared to the case of games with no externalities — due to two main challenges:

• The first is how to generate random input instances that are guaranteed to satisfy
the positive/negative externality condition. To this end, note that, in the general
CFG case, there are no conditions that have to be considered when generating input
instances. Thus, the characteristic function can be sampled from any distribution, e.g.,
Uniform, Normal, etc. On the other hand, when dealing with PFG+(PFG−), one has
to ensure that only positive (negative) externalities occur whenever two coalitions
merge. This means, in particular, that for any two arbitrary coalition structures, CS
and CS ′, such that CS ′ can be created from CS by a series of coalition merges, the
value of any coalition not involved in these merges must not be smaller (greater) in
CS ′ than in CS .

• The second challenge is how different input instances can be stored in memory. This is
particularly needed to compare different algorithms or settings. As mentioned above,
the size of the partition function quickly becomes prohibitive with a growing number
of agents. For instance, given 20 agents, the partition function consists of more than
4× 1014 values, and these require 394 terabytes of memory. What would be desirable,
then, is to be able to store partition functions more concisely.

Taking all the above into account, our main contributions are as follows:

• We develop the first CSG algorithm for PFG+/PFG−, which we call IP+/−. The
building blocks of this algorithm can be summarized as follows:

(i) We prove that it is possible to compute upper and lower bounds on the values
of any set of disjoint coalitions in PFG+/PFG−. These bounds can be used
to identify unpromising coalition structures and, hence, improve the efficiency of
CSG algorithms;

(ii) We prove that in order to establish a worst-case guarantee on solution quality in
PFG+/PFG− it is necessary to search a certain set of coalition structures;

(iii) We identify subsets of coalition structures that need to be searched — in a certain
order — so that the worst-case guarantee is proven to drop after each subset;

(iv) In the general PFG case, it is not possible to prune any partition of a subset of
agents, even if the upper bound of that partition is lower than the lower bound
of another partition of that subset. Yet, we show that in PFG+/PFG− such
pruning is possible under specific conditions. Based on this result, we develop
a pre-processing technique to prune unpromising coalition structures from the
subsets that need to be searched;

(v) In order to search through promising subsets, we extend the depth-first search
algorithm of Rahwan et al. (2009a) so that it is applicable to PFG+/PFG−.

• We provide an equation for generating random input instances, and prove that the
resulting partition function is guaranteed to satisfy the conditions of PFG+/PFG−.
We also prove that this function, which consists of O(nn) values, only requires storing
O(2n) values in memory. This function can be used as a standard benchmark for
evaluating any potential CSG algorithms that could be developed in the future for
PFG+/PFG−.

4
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Since there are no previous CSG algorithms for games with externalities, we benchmark
our algorithm against the state-of-the-art algorithms in games where no externalities are
present. We find that, as far as worst-case guarantees are concerned, our algorithm outper-
forms the other algorithms by orders of magnitude. For instance, to reach a bound of 3 given
24 agents, the number of coalition structures that need to be searched by our algorithm is
only 0.0007% of that needed by Sandholm et al. (1999), and 0.5% of that needed by Dang
and Jennings (2004). This is despite the fact that the other algorithms take advantage of
the special properties of games with no externalites, while ours does not.

The remainder of the paper is organized as follows. In Section 2, we introduce basic con-
cepts related to coalitional games with and without externalities. In Section 3, we describe
the algorithms that are currently available for solving the coalition structure generation
problem, and discuss their relative advantages and limitations. In Section 4, we describe
the CSG algorithm in PFG+/PFG−. Empirical evaluation are provided in Section 5. Sec-
tion 6 concludes the paper and outlines future work. Finally, we provide in the appendix a
summary of the main notations used throughout this paper.

2. Preliminaries

In this section we formally introduce the notions of coalitions and coalition structures (Sec-
tion 2.1), games with no externalities (Section 2.2), and games with externalities (Sec-
tion 2.3). Finally, we formalize the CSG problem in coalitional games, and provide a list of
the important notations used in this paper (Section 2.4).

2.1. Coalitions and Coalition Structures

Throughout the paper, we denote by n the number of agents, and by A = {a1, a2, · · · , an}
the set of agents. We assume that every non-empty subset of A is a possible coalition, and
denote by C the set of coalitions. More formally, C = {C : C ⊆ A,C �= ∅}. This implies that
|C| = 2n − 1.

Example 1. There are 15 coalitions that can be created from A = {a1, a2, a3, a4}: {a1},
{a2}, {a3}, {a4}, {a1, a2}, {a1, a3}, {a1, a4}, {a2, a3}, {a2, a4}, {a3, a4}, {a1, a2, a3}, {a1, a2, a4},
{a1, a3, a4}, {a2, a3, a4}, and {a1, a2, a3, a4}.

A formal definition of a coalition structure is as follows:

Definition 1 (Coalition Structure). A coalition structure, denoted CS = {C1, C2, · · · , C|CS |},
is an exhaustive partition of A into disjoint coalitions, i.e., it satisfies the following condi-

tions: (a) ∀i ∈ {1, · · · , |CS |}, Ci �= ∅; (b) ∪|CS |
i=1 Ci = A; and (c) ∀i, j ∈ {1, · · · , |CS |} : i �=

j, Ci ∩ Cj = ∅.

The set of all coalition structures will be denoted as PA, and the set of coalition structures
containing exactly s coalitions will be denoted as PA

s . The number of possible coalition
structures — also known as the nth Bell number given n agents — is computed as: |PA| =∑n

s=1

∣∣PA
s

∣∣, where:

∣∣PA
s

∣∣ = 1

i!

s−1∑
j=0

(−1)j
(
s

j

)
(s− j)n (1)

5
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Example 2. In total, there are 15 coalition structures that can be created from A = {a1, a2, a3, a4}:4

{{a1}{a2}{a3}{a4}} {{a1}{a2, a4}{a3}} {{a1}{a2, a3, a4}}
{{a1, a2}{a3}{a4}} {{a1}{a2}{a3, a4}} {{a1, a2}{a3, a4}}
{{a1, a3}{a2}{a4}} {{a1, a2, a3}{a4}} {{a1, a3}{a2, a4}}
{{a1, a4}{a2}{a3}} {{a1, a2, a4}{a3}} {{a1, a4}{a2, a3}}
{{a1}{a2, a3}{a4}} {{a1, a3, a4}{a2}} {{a1, a2, a3, a4}}

Observe that the difference between |C| and |PA| grows exponentially with the number
of agents. An example is shown in the following table:

n 1 3 5 7 9 11 13 15
|C| 1 7 31 127 511 2047 8195 32783
|PA| 1 5 52 877 21147 678570 27644437 1382958545

2.2. Characteristic Function Games

Conventionally, coalitional games with no externalities are modeled using the characteristic
function, which takes, as an input, a coalition C ∈ C and outputs its value, v(C) ∈ R, which
reflects the performance of this coalition. Formally: v : C → R. A tuple (A, v) is called a
Characteristic Function Game (CFG). It is clear from the above definition that in this type
of game the value of any coalition is independent of any other coalition. As standard in the
literature (e.g., Sandholm et al. (1999); Dang and Jennings (2004); Rahwan et al. (2009a))
we assume that v(C) ≥ 0 for all C ∈ C.

Example 3. Let a sample characteristic function for A = {a1, a2, a3, a4} be defined as
follows:

v({a1}) = 1 v({a1, a2}) = 3 v({a2, a4}) = 6 v({a1, a3, a4}) = 6
v({a2}) = 2 v({a1, a3}) = 4 v({a3, a4}) = 4 v({a2, a3, a4}) = 8
v({a3}) = 2 v({a1, a4}) = 1 v({a1, a2, a3}) = 5 v({a1, a2, a3, a4}) = 7
v({a4}) = 1 v({a2, a3}) = 5 v({a1, a2, a4}) = 5

2.3. Partition Function Games

In games with externalities, the value of a coalition depends on the way other agents are
partitioned. A coalition C that is part of a coalition structure CS will be called an embedded
coalition and denoted (C,CS ). The set of all embedded coalitions for the set A will be
denoted EC. For any embedded coalition (C,CS ) ∈ EC, the partition function w outputs a
value that reflects the performance of C in CS . Formally: w : EC → R.

Example 4. Let a sample partition function for A = {a1, a2, a3, a4} be:

4For notational convenience, commas are omitted between coalitions whenever there is no risk of confu-
sion.

6
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w({a1}, {{a1}{a2}{a3}{a4}}) = 1 w({a4}, {{a1, a2, a3}{a4}}) = 0
w({a1}, {{a2, a3}{a1}{a4}}) = 1 w({a1, a2}, {{a1, a2}{a3}{a4}}) = 3
w({a1}, {{a2, a4}{a1}{a3}}) = 0 w({a1, a2}, {{a1, a2}{a3, a4}}) = 2
w({a1}, {{a3, a4}{a1}{a2}}) = 0.5 w({a1, a3}, {{a1, a3}{a2}{a4}}) = 4
w({a1}, {{a1}{a2, a3, a4}}) = 0 w({a1, a3}, {{a1, a3}{a2, a4}}) = 3
w({a2}, {{a1}{a2}{a3}{a4}}) = 2 w({a1, a4}, {{a1, a4}{a2}{a3}}) = 1
w({a2}, {{a3, a4}{a1}{a2}}) = 1 w({a1, a4}, {{a1, a4}{a2, a3}}) = 1
w({a2}, {{a1, a3}{a2}{a4}}) = 2 w({a2, a3}, {{a2, a3}{a1}{a4}}) = 5
w({a2}, {{a1, a4}{a2}{a3}}) = 1 w({a2, a3}, {{a2, a3}{a1, a4}}) = 4
w({a2}, {{a1, a3, a4}{a2}}) = 0 w({a2, a4}, {{a2, a4}{a1}{a3}}) = 6
w({a3}, {{a1}{a2}{a3}{a4}}) = 2 w({a2, a4}, {{a2, a4}{a1, a3}}) = 4
w({a3}, {{a1, a2}{a3}{a4}}) = 1 w({a3, a4}, {{a3, a4}{a1}{a2}}) = 4
w({a3}, {{a1, a4}{a2}{a3}}) = 2 w({a3, a4}, {{a3, a4}{a1, a2}}) = 3
w({a3}, {{a2, a4}{a1}{a3}}) = 1 w({a1, a2, a3}, {{a1, a2, a3}{a4}}) = 5
w({a3}, {{a1, a2, a4}{a3}}) = 0 w({a1, a2, a4}, {{a1, a2, a4}{a3}}) = 5
w({a4}, {{a1}{a2}{a3}{a4}}) = 1 w({a1, a3, a4}, {{a1, a3, a4}{a2}}) = 6
w({a4}, {{a2, a3}{a1}{a4}}) = 0.5 w({a2, a3, a4}, {{a2, a3, a4}{a1}}) = 8
w({a4}, {{a1, a3}{a2}{a4}}) = 0.5 w({a1, a2, a3, a4}, {{a1, a2, a3, a4}}) = 7
w({a4}, {{a1, a2}{a3}{a4}}) = 1

A tuple (A,w) is called a Partition Function Game (PFG). Whenever convenient, we
will use a concise notation to represent partition functions, where values of all coalitions
embedded in a given coalition structure are represented as a vector. Formally, given a
coalition structure CS = {C1, . . . , C|CS |}, the values of (C1,CS ), . . . , (C|CS |,CS ) will be
denoted as [w(C1,CS ), . . . , w(C|CS |,CS )].

Example 5. A shorthand notation for the partition function from Example 4:

Coalition structure Vector Coalition structure Vector
{{a1}{a2}{a3}{a4}} [1, 2, 2, 1] {{a1, a3}{a2, a4}} [3, 4]
{{a1, a2}{a3}{a4}} [3, 1, 1] {{a1, a4}{a2, a3}} [1, 4]
{{a1, a3}{a2}{a4}} [4, 2, 0.5] {{a1, a2, a3}{a4}} [5, 0]
{{a1, a4}{a2}{a3}} [1, 1, 2] {{a1, a2, a4}{a3}} [5, 0]
{{a1}{a2, a3}{a4}} [1, 5, 0.5] {{a1, a3, a4}{a2}} [6, 0]
{{a1}{a2, a4}{a3}} [0, 6, 1] {{a1}{a2, a3, a4}} [0, 8]
{{a1}{a2}{a3, a4}} [0.5, 1, 4] {{a1, a2, a3, a4}} [7]
{{a1, a2}{a3, a4}} [2, 3]

The partition function takes into account any externality from coalition formation. By
this we mean a change in a value of a given coalition caused by a merge of two other
co-existing coalitions.5 More formally:

Definition 2 (Externalities). Let CS ,CS ′ ∈ PA be two coalition structures such that
|CS ′| ≥ 3 and there exist C ′, C ′′ ∈ CS ′ such that CS = {C ′ ∪ C ′′} ∪ CS ′ \ {C ′, C ′′}. Then,

5For a discussion of alternative notions of externalities in multi-agents systems see (Michalak et al., 2009),
and for a comprehensive economic study of externalities and related issues see (Cornes and Sandler, 1996).
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Example 2. In total, there are 15 coalition structures that can be created from A = {a1, a2, a3, a4}:4

{{a1}{a2}{a3}{a4}} {{a1}{a2, a4}{a3}} {{a1}{a2, a3, a4}}
{{a1, a2}{a3}{a4}} {{a1}{a2}{a3, a4}} {{a1, a2}{a3, a4}}
{{a1, a3}{a2}{a4}} {{a1, a2, a3}{a4}} {{a1, a3}{a2, a4}}
{{a1, a4}{a2}{a3}} {{a1, a2, a4}{a3}} {{a1, a4}{a2, a3}}
{{a1}{a2, a3}{a4}} {{a1, a3, a4}{a2}} {{a1, a2, a3, a4}}

Observe that the difference between |C| and |PA| grows exponentially with the number
of agents. An example is shown in the following table:

n 1 3 5 7 9 11 13 15
|C| 1 7 31 127 511 2047 8195 32783
|PA| 1 5 52 877 21147 678570 27644437 1382958545

2.2. Characteristic Function Games

Conventionally, coalitional games with no externalities are modeled using the characteristic
function, which takes, as an input, a coalition C ∈ C and outputs its value, v(C) ∈ R, which
reflects the performance of this coalition. Formally: v : C → R. A tuple (A, v) is called a
Characteristic Function Game (CFG). It is clear from the above definition that in this type
of game the value of any coalition is independent of any other coalition. As standard in the
literature (e.g., Sandholm et al. (1999); Dang and Jennings (2004); Rahwan et al. (2009a))
we assume that v(C) ≥ 0 for all C ∈ C.

Example 3. Let a sample characteristic function for A = {a1, a2, a3, a4} be defined as
follows:

v({a1}) = 1 v({a1, a2}) = 3 v({a2, a4}) = 6 v({a1, a3, a4}) = 6
v({a2}) = 2 v({a1, a3}) = 4 v({a3, a4}) = 4 v({a2, a3, a4}) = 8
v({a3}) = 2 v({a1, a4}) = 1 v({a1, a2, a3}) = 5 v({a1, a2, a3, a4}) = 7
v({a4}) = 1 v({a2, a3}) = 5 v({a1, a2, a4}) = 5

2.3. Partition Function Games

In games with externalities, the value of a coalition depends on the way other agents are
partitioned. A coalition C that is part of a coalition structure CS will be called an embedded
coalition and denoted (C,CS ). The set of all embedded coalitions for the set A will be
denoted EC. For any embedded coalition (C,CS ) ∈ EC, the partition function w outputs a
value that reflects the performance of C in CS . Formally: w : EC → R.

Example 4. Let a sample partition function for A = {a1, a2, a3, a4} be:

4For notational convenience, commas are omitted between coalitions whenever there is no risk of confu-
sion.

6
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the formation of (C ′∪C ′′,CS ) from (C ′,CS ′) and (C ′′,CS ′) imposes an externality on every
other embedded coalition (C,CS ) such that C �= C ′ ∪ C ′′, which is defined as:

ε(C,CS ,CS ′) = w(C,CS )− w(C,CS ′)

Thus, every externality is uniquely determined by a tuple (C,CS ,CS ′). A set of all such
tuples in a game (A,w) will be denoted by T (w).

Now, we can formally define games with positive externalities (PFG+) and games with
negative externalities (PFG−):

Definition 3 (Game with positive (negative) externalities). We say that partition func-
tion game (A,w) is characterized by positive (negative) externalities if and only if, for all
(C,CS ,CS ′) ∈ T (w), the following holds:

ε(C,CS ,CS ′) ≥ (≤) 0

Example 6. The game defined in Example 4 has only negative externalities. For example,
the externalities affecting coalition {a1} are:

ε({a1}, {{a1}{a2,a3}{a4}}, {{a1}{a2}{a3}{a4}})
= w({a1}, {{a1}{a2, a3}{a4}})− w({a1}, {{a1}{a2}{a3}{a4}}) = 0;

ε({a1}, {{a1}{a2,a4}{a3}}, {{a1}{a2}{a3}{a4}})
= w({a1}, {{a1}{a2, a4}{a4}})− w({a1}, {{a1}{a2}{a3}{a4}}) = −1;

ε({a1}, {{a1}{a2}, {a3,a4}}, {{a1}{a2}{a3}{a4}})
= w({a1}, {{a1}{a2}{a3, a4}})− w({a1}, {{a1}{a2}{a3}{a4}}) = −0.5;

ε({a1}, {{a1}{a2,a3,a4}}, {{a1}{a2,a3}{a4}})
= w({a1}, {{a1}{a2, a3, a4}})− w({a1}, {{a1}{a2, a3}{a4}}) = −1;

ε({a1}, {{a1}{a2,a3,a4}}, {{a1}{a2,a4}{a3}})
= w({a1}, {{a1}{a2, a3, a4}})− w({a1}, {{a1}{a2, a4}{a3}}) = 0;

ε({a1}, {{a1}{a2,a3,a4}}, {{a1}{a2}{a3,a4}})
= w({a1}, {{a1}{a2, a3, a4}})− w({a1}, {{a1}{a2}{a3, a4}}) = −0.5.

It is not difficult to check that externalities affecting other coalitions in the game are also
non-positive.

Observe that CFGs are a special case of PFGs where every externality equals zero.
They are also a special case of PFG+/PFG−. This means, in particular, that any available
algorithm designed for games with no externalities cannot be directly applied to those with
externalities. Conversely, the algorithms that are proposed in this paper for PFG+/PFG−

are directly applicable to CFGs.

2.4. The CSG Problem Formalized

The CSG problem is to find an optimal coalition structure CS∗ ∈ PA, which is formally
defined for CFGs as follows:

CS∗ = arg max
CS∈PA

∑
C∈CS

v(C),

while, for PFGs, it is defined as follows:

CS∗ = arg max
CS∈PA

∑
C∈CS

w(C,CS ).
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Example 7. Referring to the game with no externalities defined in Example 3, we have
CS∗ = {{a1, a3}, {a2, a4}}. This is because v({a1, a3}) + v({a2, a4}) = 10 which is greater
than the value of any other coalition structure in this game. As for the game with externali-
ties defined in Example 4, CS∗ = {{a1}{a2, a3, a4}} since w({a1},CS∗)+w({a2, a3, a4},CS∗) =
8 is greater than the value of any other coalition structure in this game.

3. Related Work

In this section we will briefly discuss the available CSG algorithms for games with no ex-
ternalities (i.e., CFGs). Broadly, these can be divided into exact and non-exact algorithms
(Rahwan et al., 2009a). Basically, the non-exact algorithms return “good” solutions rela-
tively quickly, and scale up well with the increase in the number of agents involved (see, e.g.,
Shehory and Kraus (1998); Sen and Dutta (2000)). However, they provide no guarantees
on the quality of their solutions. Exact algorithms, on the other hand, are guaranteed to
find an optimal coalition structure. In this paper, we are interested in finding the optimal
coalition structure and so we focus solely on exact algorithms. To this end, such algorithms
are based on two main techniques:

• Anytime optimization — The basic idea is to generate an initial solution that is guar-
anteed to be within a finite bound from the optimal one. After that, more coalition
structures are examined so as to improve the solution and bound quality, until an op-
timal solution is found (see, e.g., Sandholm et al. (1999); Dang and Jennings (2004);
Rahwan et al. (2007a, 2009a)). Although anytime CSG algorithms might, in the worst
case, end up searching the entire space (i.e., they run in O(nn) time), they are robust
against failure; if the execution is stopped before the algorithm would normally have
terminated, then it can still return a solution that is better than the initial, or any
other intermediate, one..

• Dynamic Programming — The basic idea of dynamic programming is to break the op-
timization problem into sub-problems that can be solved recursively, and then combine
the results to solve the original problem, thereby avoiding the work of recomputing
the answer every time the sub-problem is encountered (see, e.g., Yeh (1986); Rothkopf
et al. (1995); Rahwan and Jennings (2008a)).The advantage of dynamic programming
algorithms, compared to their anytime counterpart, is that they run in O(3n) time.
However, the disadvantage is that they provide no interim solution before completion.

Recently, a number of algorithms have been developed that combine the above two
techniques (see, e.g., Rahwan and Jennings (2008b); Service and Adams (2010, 2011)).

In all the above algorithms, the focus was on settings where the coalition values are given
explicitly, i.e., as a table of 2n values. However, there is another line of research that focuses
on solving the CSG problem given concise representations (see, e.g., Ohta et al. (2009);
Rahwan et al. (2011); Ueda et al. (2011)). However, this issue is beyond the scope of this
paper.

Next, we will describe in detail some algorithms from the CFG literature (since we will
use similar techniques later on in Section 4 to construct our PFG algorithm). To this
end, observe, that dynamic programming techniques cannot be applied in PFGs. This is
because they depend heavily on the CFG assumption that a coalition (or a group of disjoint
coalitions) has the same value in any coalition structure containing it. This assumption
makes it possible to re-use the same result in different coalition structures. In PFGs,

9
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however, this assumption does not hold since the externalities in one coalition structure
can be different from that in another. Against this background, we will only describe the
anytime algorithms that do not use dynamic programming techniques. Such algorithms can
be divided into two categories, where the focus in the first is on the worst-case guarantee,
and the focus in the second is on solution quality. The following two subsections describe
these categories in more detail.

3.1. Algorithms that Focus on Worst-Case Guarantees

The main focus of such algorithm is on how to establish a worst-case ratio bound β on
solution quality, i.e., how to identify a subset of coalition structures P ′ ⊆ PA such that:

maxCS∈PA

∑
C∈CS w(C,CS )

maxCS∈P′
∑

C∈CS w(C,CS )
≤ β

In more detail, these algorithms focus on dividing the search space into subsets, and iden-
tifying the sequence in which these subsets have to be searched so that β guaranteed to
improve after each subset. The first anytime CSG algorithm was developed by Sandholm
et al. (1999). Here, the space of coalition structures, i.e., PA, is represented as a coalition
structure graph, where:

• Every node represents a coalition structure. All nodes are categorized into n levels,
noted as PA

1 , · · · ,PA
n where level PA

s is the set of coalition structures that contain
exactly s coalitions;

• Every undirected edge connects two coalition structures, belonging to two consecutive
levels, PA

s−1 and PA
s , such that the coalition structure in level PA

s−1 can be created
from the one in level PA

s by merging exactly two coalitions into one. In other words,
an edge in the graph represents a merger of two coalitions when followed upwards, and
a split of a coalition into two when followed downwards.

Figure 1 shows an example of the coalition structure graph given 4 agents. Sandholm
et al. (1999) proved that there exists a minimum set of coalition structures that have to be
searched in order to establish any bound on the quality of the solution. Specifically, this
is achieved by searching through the first two levels of the coalition structure graph (which
contain 2n−1 coalition structures in total) and the result of this search is within a ratio
bound β = n from the optimal.

If additional time is available after the first two levels have been searched, then it would
be desirable to improve the bound with further search. To this end, Sandholm et al. proposed
to search the remaining levels one by one, starting from the bottom level (i.e., PA

n ), and
moving upwards. They proved that the bound improves as the algorithm searches more
levels. In more detail, assuming that the algorithm has just completed searching level PA

s ,
the bound becomes β = �n/h�, where h = �(n− s)/2� + 2. The only exception is when
n ≡ h− 1(mod h) and n ≡ s(mod 2),, in which case the bound becomes β = �n/h�.

A different algorithm was proposed by Dang and Jennings (2004). This algorithm starts
by searching the top two levels, as well as the bottom one (as Sandholm et al.’s algorithm
does). After that, however, instead of searching through the remaining levels one by one (as
Sandholm et al. do), the algorithm searches through certain subsets of all remaining levels.
Specifically, it searches the coalition structures that have at least one coalition of which the
size is not less than �n(d− 1)/d� (with d running from �(n+ 1)/4� down to 2). Dang and
Jennings proved that, for any given value of d, the algorithm establishes a bound β = 2d−1.

10
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Figure 1: The coalition structure graph for 4 agents.

As mentioned in the introduction, however, such algorithms only identify the coalition
structures that need to be searched in order to further improve the ratio bound. They do
not specify how the search process is carried out, and it is implicitly assumed that a simple
brute-force procedure is applied.

3.2. Algorithms that Focus on Solution Quality

Such algorithms focus on searching the space of coalition structures as quickly as possible,
and not on reducing the worst-case ratio bound. The state-of-the-art algorithm in this
category is the IP algorithm Rahwan et al. (2007a). This algorithm is based on a novel
representation of the search space that divides the coalition structures into subspaces based
on the sizes of the coalitions they contain (Rahwan et al., 2007b). In more detail, a subspace
is represented by an integer partition of n.6 For example, given 4 agents, the possible integer
partitions are [4], [1, 3], [2, 2], [1, 1, 2], [1, 1, 1, 1], and each of these represents a subspace
containing all the coalition structures within which the coalition sizes match the parts of the
integer partition. For example, [1, 1, 2] represents the subspace of all the coalition structures
within which two coalitions are of size 1, and one coalition is of size 2. The integer partition
graph is a graph where a node represents an integer partition, and an edge connects two
integer partitions I, I ′ ∈ In, where |I| > |I ′|, if and only if there exists i, j ∈ I such that
I ′ = (I \ {i, j}) � {i + j} (Rahwan and Jennings, 2008b). Figure 2 shows an example of 4
agents.

What is significant about this representation is that, for every subspace, it is possible
to compute upper and lower bounds on the value of the best solution that can be found
in it. To this end, let Maxs and Avgs be the maximum and the average values of the
coalitions of size s respectively. Also, let In be the set of integer partitions of n, and PA

I

be the subspace that corresponds to the integer partition I ∈ In. Then, for all I ∈ In, it is
possible to compute an upper bound UBA

I on the value of the best solution in PA
I as follows:

6Recall that an integer partition of a positive integer number i consists of a set of positive integers (called
“parts”) that add up to exactly i (Skiena, 1998). For presentation clarity, we use square brackets throughout
this paper (instead of curly ones) to represent integer partitions.
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Figure 2: The integer partition graph, and the subspaces represented by different nodes.

UBA
I =

∑
s∈I Maxs. Similarly, a lower bound LBA

I on the value of the best solution in PA
I

can be computed as follows: LBI =
∑

s∈I Avgs.
7 These bounds are then used to establish

worst-case guarantees on the quality of the best solution found so far, and to prune any
subspace that has no potential to contain a solution better than the current best one. As
for the remaining subspaces, IP searches them one at a time, unless a value is found that
is higher than the upper bound of another subspace, in which case that subspace no longer
needs to be searched. Searching a subspace is done using an efficient process that applies
branch-and-bound techniques to avoid examining every solution in it. For more details on
the IP algorithm, see (Rahwan et al., 2009a).

4. The IP+/− Algorithm

In this section, we describe our CSG algorithm for PFG+/PFG−. The name IP+/− comes
from the fact that the algorithm is based on the integer partition representation of the
coalition structure space (see Section 3 for more details).

The remainder of this section is composed of five subsections that introduce the main
building blocks of IP+/−. Specifically, in Section 4.1, we show that it is possible to com-
pute upper and lower bounds on the values of coalitions and sets of disjoint coalitions. In
Section 4.2, we prove that there exists a certain set of coalition structures that has to be
searched in order to establish a bound from the optimal solution. In Section 4.3, we present
a procedure that identifies the subspaces of coalition structures that need to be searched
in order to improve the bound. In Section 4.4 we propose a pre-processing procedure that
uses upper and lower bounds of subspaces to prune unpromising ones. Finally, in order to
search the promising subspaces, we extend in Section 4.5 the breadth-first search technique
of Rahwan et al. (2009a) so that it is applicable to PFG+/PFG−.

4.1. Computing Upper and Lower Bounds

We define the value of a coalition structure CS ∈ PA, denoted W (CS ), as the sum of the
values of all the coalitions in CS , that is, W (CS ) =

∑
C∈CS w(C,CS ). Moreover, for any

7Interestingly, Rahwan et al. (2007a) proved that this lower bound is actually the average value of all the
solutions in PA

I .
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coalition C ∈ C, we denote by C the agents in A that do not belong to C (i.e., C = A\C).
Furthermore, we define a partition of C as a set containing disjoint coalitions of which the
union equals C, and denote the set of all such partitions as PC .8 While every element of
a partition P ∈ PC is a coalition, where there is no risk of confusion, we will denote such
an element by small letter p for notational convenience. Finally, for any coalition structure
CS , the value of a partition P ⊆ CS , denoted W (P,CS ), is defined as the sum of the values
of all the coalitions in that partition, i.e., W (P,CS ) =

∑
p∈P w(p,CS ).

Now, we have the following theorem:

Theorem 1. Consider a PFG− (PFG+) setting. Given a coalition C ⊆ C, a partition
P ∈ PC , and a coalition structure CS ⊇ P , the following holds, where the agents in C are
denoted as: a1, ..., a|C|:

W (P, {C} ∪ P ) ≤ (≥) W (P,CS ) ≤ (≥) W (P, {{a1}, . . . , {a|C|}} ∪ P )

Proof. To simplify notation, let CS ′ = {C} ∪ P and CS ′′ = {{a1}, ..., {a|C|}} ∪ P . Also,

without loss of generality, assume that CS �= CS ′ and CS �= CS ′′. Then, given a PFG−

(PFG+) setting, we first need to prove that:

W (P,CS ′) ≤ (≥) W (P,CS ) (2)

Beginning with CS , it is always possible to reach CS ′ by performing multiple steps, each
involving the merging of two coalitions into one. In each step, the coalitions in P remain
unchanged, and due to negative (positive) externalities, their values can only decrease (in-
crease). As a result, the inequality in (2) holds. Similarly, beginning with CS ′′, it can be
proved that the following holds: W (P,CS ) ≤ (≥) W (P,CS ′′).

�

Theorem 1 bounds the value of any given partition of C. Specifically, for every partition
P ∈ PC , the upper bound UBP and lower bound LBP can be computed in a PFG−

(PFG+) setting as follows, where C = {a1, . . . , a|C|}:

LBP (UBP ) =
∑
p∈P

w(p, P ∪ {C})

UBP (LBP ) =
∑
p∈P

w(p, P ∪ {{a1}, . . . , {a|C|}})

By assuming that P = {C}, it is possible, using the above equations, to compute an upper
bound UBC and a lower bound LBC on the value of any coalition C.

Now, let us denote by 2C the power set of C, i.e., the set of all subsets of C. Moreover,
let us denote by Ik the set of possible integer partitions of number k ∈ N. Then, given a
coalition C ∈ C, and an integer partition I ∈ Is : s ≤ |C|, we will define PC

I as the set
consisting of every possible P ⊆ 2C such that the sizes of the subsets in P match the parts
in I. Consider the following example:

8Note that if C = A then any partition of C would be a coalition structure.

13



< 34 > Visiting Professors

Example 8. For C = {a1, a2, a3, a4} and I = [1, 2] we have:

P{a1,a2,a3,a4}
[1,2] =




{{a1}, {a2, a3}}, {{a1}, {a2, a4}}, {{a1}, {a3, a4}},
{{a2}, {a1, a3}}, {{a2}, {a1, a4}}, {{a2}, {a3, a4}},
{{a3}, {a1, a2}}, {{a3}, {a1, a4}}, {{a3}, {a2, a4}},
{{a4}, {a1, a2}}, {{a4}, {a1, a3}}, {{a4}, {a2, a3}}




Now, given Theorem 1, we can compute upper and lower bounds (denoted UBC
I and

LBC
I respectively) on the values of the elements of PC

I as follows:

∀C ∈ C, ∀s ≤ |C|, ∀I ∈ Is,UBC
I = max

P∈PC
I

UBP , and LBC
I = min

P∈PC
I

LBP

Observe that PC
I is a subset of PC if and only if I ∈ I |C|. For example, P{a1,a2,a3,a4}

[1,1,2] is

a subset of P{a1,a2,a3,a4}, while P{a1,a2,a3,a4}
[1,2] is not.

4.2. Establishing a Worst-Case Bound

Having computed upper and lower bounds for coalition and partition values in the previous
section, we now show how these can be used to identify the minimum search required to
establish a worst-case ratio bound β from the optimum. In order to do so, we will use the
following general theorem:

Theorem 2. Let us define X , Y, and Z as follows:

• X is a set of elements;

• Y is a set containing subsets of X .

• Z is a set containing subsets of X such that every y ∈ Y can be partitioned using
subsets from Z.

Furthermore, let us define ν and V as follows:

• ν is a function; ν : X × Y → R+ ∪ {0}. We call ν(x, y) the value of x in y, where
ν(x, y) = 0 for all y and all x /∈ y.

• V is a function defined for every y ∈ Y as follows: V (y) =
∑

x∈y ν(x, y). We call
V (y) the value of y.

Then, for any Y ′ ⊆ Y, if the following holds:

∀z ∈ Z, ∃y′ ∈ Y ′ : z ⊆ y′ ∧
∑
x∈z

ν(x, y′) = max
y∈Y

∑
x∈z

ν(x, y) (3)

We have:
max
y∈Y

V (y) ≤ max
y∈Y

‖y‖Z ∗ max
y′∈Y′

V (y′)

where ‖y‖Z is defined as follows:

‖y‖Z = min
Z′⊆Z:∪Z′=y∧∀z,z′∈Z′:z∩z′=∅

|Z ′|
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In other words, let us define ‖y‖Z as the size of y with respect to Z, which is basically the
minimum number of subsets from Z that partition the subset. For example, if Z contains
the following four subsets: {x1}, {x2}, {x4} and {x1, x3}, then, given y = {x1, x3, x4}, we
have ‖y‖Z = 2. In this case, we say that the size of y with respect to Z is 2. Now, if every
subset in Z appears with its maximum value in at least one of the subsets in Y ′, then the
best subset in Y ′ is within a ratio bound from the best subset in Y. This bound equals the
biggest subset in Y with respect to Z.

Proof. Let y∗ be the best subset in Y, i.e., y∗ = argmaxy∈Y V (y). Moreover, let Z∗

be the smallest partition of y∗ in Z. That is:

Z∗ = {z∗1 , · · · , z∗|Z∗|} ⊆ Z : ∪Z∗ = y∗, z∗i ∩ z∗j �=i = ∅, |Z∗| = ‖y∗‖Z

Now, since Z∗ is a partition of y∗, then we can write V (y∗) as follows:

V (y∗) =
∑
x∈z∗

1

ν(x, y∗) + · · · +
∑

x∈z∗
|Z∗|

ν(x, y∗)

This, in turn, implies that:

V (y∗) ≤ |Z∗| ∗ max
z∗
i ∈Z∗

∑
x∈z∗

i

ν(x, y∗)

Now since |Z∗| = ‖y∗‖Z , and since ‖y∗‖Z ≤ max
y∈Y

‖y‖Z , we find that:

V (y∗) ≤ max
y∈Y

‖y‖Z ∗ max
z∗
i ∈Z∗

∑
x∈z∗

i

ν(x, y∗) (4)

Furthermore, assuming that (3) holds, we have:

∀z∗i ∈ Z∗, ∃y′ ∈ Y ′ : z∗i ⊆ y′ ∧
∑
x∈z∗

i

ν(x, y′) = max
y∈Y

∑
x∈z∗

i

ν(x, y) (5)

Now since the following holds for every z∗i ∈ Z∗:

∑
x∈z∗

i

ν(x, y∗) ≤ max
y∈Y

∑
x∈z∗

i

ν(x, y) (6)

Then, from (5) and (6), we find that:

∀z∗i ∈ Z∗, ∃y′ ∈ Y ′ : z∗i ⊆ y′ ∧
∑
x∈z∗

i

ν(x, y′) ≥
∑
x∈z∗

i

ν(x, y∗) (7)

Moreover, we know that:

∀y′ ∈ Y ′, ∀z∗i ⊆ y′ :
∑
x∈y′

ν(x, y′) ≥
∑
x∈z∗

i

ν(x, y′) (8)
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Based on (8), as well as the fact that V (y′) =
∑

x∈y′ ν(x, y′), we find that:

∀y′ ∈ Y ′, ∀z∗i ⊆ y′ : V (y′) ≥
∑
x∈z∗

i

ν(x, y′) (9)

From (7) and (9), we find that:

∀z∗i ∈ Z∗, ∃y′ ∈ Y ′ : z∗i ⊆ y′ ∧ V (y′) ≥
∑
x∈z∗

i

ν(x, y∗)

This, in turn, implies that:

∃y′ ∈ Y ′ : V (y′) ≥ max
z∗
i ∈Z∗

∑
x∈z∗

i

ν(x, y∗) (10)

Finally, from (4) and (10), we find that:

∃y′ ∈ Y ′ : V (y∗) ≤ max
y∈Y

‖y‖Z ∗ V (y′)

�

Having proved Theorem 2, we now show how it can be used while proving the main theorem
for establishing a ratio bound β in PFG+/PFG−.

Theorem 3. To establish a bound β on the value of a coalition structure given a PFG+

setting, every subspace PA
I : I ∈ In : |I| ≤ 2 must be searched. With this search, the number

of coalition structures searched is 2n−1, and the bound β = n. On the other hand, given a
PFG− setting, every subspace PA

I : I ∈ {[n], [n− 1, 1], [n− 2, 1, 1], · · · , [1, 1, · · · , 1]} must be
searched. With this search, the number of coalition structures searched is 2n − n + 1, and
β =

⌈
n
2

⌉

Proof. To establish a bound, the maximum possible value of each coalition C has to be
observed (in some coalition structure). Given a PFG+ setting, the only coalition structure in
which C is guaranteed to have its maximum value is {C,A\C}. Based on this, the subspaces
PA
I : I ∈ In : |I| ≤ 2 must be searched, and these contain 2n−1 coalition structures.
To prove that β = n, we use Theorem 2 as follows:

• We consider X to be the set of coalitions. That is, X = C.

• We consider Y to be the set of coalition structures, and Y ′ to be a subset of Y containing
the coalition structures of size 1 or 2. That is, Y = PA and Y ′ = PA

I : I ∈ In : |I| ≤ 2.

• We consider Z = {{C} : C ∈ C}.

Now since every subset in Z appears with its maximum value in one, or more, of the coalition
structures in Y ′, then the best coalition structure in Y ′ is within a ratio bound β from the
best coalition structure in Y, where β = maxy∈Y ‖y‖Z . This implies that β = n since

‖{{a1}, · · · , {an}}‖Z = n.
On the other hand, given a PFG− setting, the only coalition structure in which C is

guaranteed to have its maximum value is: {C, {a1}, . . . , {a|C|}}, where {a1}∪ . . .∪{a|C|} =

C. Based on this, the following subspaces have to be searched: PA
I : I ∈ {[n], [n− 1, 1], [n−

16



> Praktyka Internetu < 37 >

2, 1, 1], . . . , [1, 1, . . . , 1]}. With this search, the number of searched coalition structures would
be 2n − n + 1 since every possible coalition appears in a unique coalition structure, except
for the singleton ones (which all appear in a single coalition structure).

As in the PFG+ case, we use Theorem 2 to prove that β =
⌈
n
2

⌉
. Here:

• We consider X to be the set of coalitions.

• We consider Y to be the set of coalition structures (i.e., Y = PA), and consider:
Y ′ = PA

[n] ∪ PA
[n−1,1] ∪ PA

[n−2,1,1] ∪ · · · ∪ PA
[1,··· ,1].

• We consider Z = {{C} : C ∈ C} ∪ {{C : C ∈ C, |C| = 1}}, i.e., every subset in
Z contains either a single coalition, or a combination of singletons. Note that the
maximum possible value of every such combination has been observed in PA

[1,··· ,1] (see

Theorem 1).

The above implies that the best coalition structure in Y ′ is within a ratio bound β from
the best coalition structure in Y since every possible subset in Z appears with its maximum
value in Y ′. This bound equals the size of the biggest coalition structure with respect
to Z (see Theorem 2). Importantly, since every combination of singletons belongs to Z
then, for any two coalition structures CS and CS ′ such that CS ′ contains more than one
singleton, and CS ′ is derived from CS by grouping all singletons into one coalition, we have
‖CS‖Z = ‖CS ′‖Z . Based on this, it can easily be shown that the biggest coalition structures
with respect to Z are those belonging to PA

[2,2,··· ,2,1] when the number of agents is odd, and

to PA
[2,2,··· ,2] when the number of agents is even. In either case, we have: max

y∈Y
‖y‖Z =

⌈
n
2

⌉
.

�

Interestingly, in CFGs, it is sufficient to search the first and second levels of the coalition
structure graph in order to bound β (Sandholm et al., 1999). However, it is also possible to
bound β by searching any other set of coalition structures as long as every coalition appears
at least once in this set. On the other hand, given a PFG− setting, it is necessary to
search PA

I : I ∈ {[n], [n − 1, 1], [n − 2, 1, 1], · · · , [1, 1, · · · , 1]} and, given a PFG+ setting, it
is necessary to search PA

I : I ∈ In : |I| ≤ 2 (see Theorem 3).

4.3. Improving the Worst-Case Bound

In this section, we present our procedure for reducing the ratio bound with further search.
This procedure is based on Theorem 2, where X is considered to be the set of coalitions,
and Y is considered to be the set of coalition structures, and the basic idea is to select Y ′

and Z such that the desired bound is obtained. That is, we first select Y ′ and Z so as to
obtain the initial bound β identified in Theorem 3. After that, we add certain elements to
Y ′ and Z so as to drop the bound to β − 1, and then repeat the same process to drop it to
β − 2, and so on.

For presentation clarity, we will first discuss an example of how the procedure works, and
then present the pseudo code of this procedure. In particular, an example of 10 agents with
positive externalities is shown in Figure 3, where integers are used to represent coalition
sizes. For instance, {{C} : C ∈ C, |C| = 2} is represented by [2]. Similarly, {{C,C ′} :
C,C ′ ∈ C, |C| = 4, |C ′| = 3} is represented by [4, 3]. In more detail:

17
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Figure 3: Example of our procedure for reducing the ratio bound algorithm with further search given 10
agents and positive externalities. The circles that surround the same combination of integers have the same
color.

18

Figure 3: Example of our procedure for reducing the ratio bound algorithm with further search given 10
agents and positive externalities. The circles that surround the same combination of integers have the same
color.

18
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• Figure 3 (A): Z initially contains every possible subset of X that is of size 1, while
Y ′ initially contains the coalition structures in PA

I : I ∈ I10 : |I| ≤ 2 (see how Z
contains the integers 1, 2, · · · , 10 in the figure, while Y ′ contains the integer partitions
of 10 that contains exactly two integers each). Since every subset in Z appears in Y ′

with its maximum value (see Theorem 1), then the best coalition structure in Y ′ is
within a ratio bound β from the best one in Y. This bound is equal to the size of the
biggest subset of Y with respect to Z. Here, the biggest subset happens to be the one
represented by [1, · · · , 1] (i.e., it is {{a1}, · · · , {an}}), which is of size 10.

• Figure 3 (B): Here, we add to Z every combination of two singletons (see how Z
now contains [1, 1] in the figure). To ensure that, after this addition, every subset
in Z still appears in Y ′ with its maximum value, we need to add to Y ′ the coalition
structures that correspond to [8, 1, 1] (see Theorem 1). Importantly, the modification
to Z reduces the size of the biggest subset in Y with respect to Z. In particular, when
computing the size of {{a1}, · · · , {an}} with respect to Z, we can see that it drops
from 10 to 5.

• Figure 3 (C): Here, we add to Z all the combinations of four singletons and all the
combinations of two coalitions of size 2 each. We also add to Y ′ the coalition structures
where those combinations appear with their maximum values (see the elements that
were added to Z and Y ′ in the figure). As a result of those additions to Z and Y ′,
we can see that the size of the biggest subset in Y with respect to Z has now dropped
from 5 to 4.

• Figure 3 (D): The key question, then, at every stage is the following: which elements
should be added to Z and Y ′ in order to drop the size of the biggest subset in Y with
respect to Z? In our example, the biggest subsets in Y are now of size 4 each, and
they belong to the subspaces that are highlighted in the figure. As can be seen, it is
not trivial to determine which elements to add to Z and Y ′. We solve this problem by
using an Integer Programming solver. The basic idea is to represent the problem as
a boolean matrix, where every row corresponds to one of the subspaces that need to
be dealt with (i.e., a subspace containing subsets of which the size, with respect to Z,
equals β), and every column corresponds to a unique combination that could be added
to Z (see Figure 4). The value of the matrix at any given row r and column c equals
1 if, by adding to Z the combination that corresponds to column c, we drop the size
of the subspace corresponding to row r. Otherwise, the value is 0.9 In Figure 4, for
example, the value at row 2 and column 4 is 1. This is because the size of any subset
in PA

[4,3,2,1] drops from 4 to 3 by adding to Z all the combinations of two coalitions
where one is of size 2 and the other is of size 1. What we need, then, is to find a
set of columns such that, for every row, the value in the matrix equals 1 in one or
more of those columns. In Figure 4, for example, the highlighted columns represent
a possible solution. The process of finding the required set of columns is done using
an integer programming solver. The integer formulation takes into consideration, for
every column, the size of the subspace that needs to be added to Y ′ (see the cost vector
in Figure 4). For example, adding to Z the combinations of coalitions of sizes 2, 1, 1
has a cost of 1260. This is because we need to add PA

[6,2,1,1] to Y ′, and this contains

9The values that are equal to 0 are omitted from the matrix in Figure 4 for presentation clarity.

19



< 40 > Visiting Professors

1260 coalition structures. The integer solver finds a feasible set of columns of which
the cost is minimal.

Figure 4: Example of how the integer model finds the subspaces to be searched in order to improve the ratio
bound.

Having presented a detailed example of our procedure for reducing the ratio bound,
we now present the pseudo code of this procedure (see Algorithm 1). In more detail, we
initially search PA

[n],P
A
[n−1,1], . . . ,P

A
[1,1,··· ,1] in the PFG− case, and search PA

[n−2,1,1]∪P
A
I : I ∈

In, |I| ≤ 2 in the PFG+ (steps 1 to 5). This can be interpreted as putting those subspaces
in Y ′, and putting in Z the subsets of X that appear with their maximum value in those
subspace (i.e., Z = {{C} : C ∈ C} ∪ {C′ : C′ ⊆ C ∧ ∀C ∈ C′ : |C| = 1}} in PFG−, and
Z = {{C} : C ∈ C} ∪ {{C,C ′} : C,C ′ ∈ C, |C| = 1, |C ′| = 1}} in PFG+). It can easily be
shown that the bound in this case would be β =

⌈
n
2

⌉
(see Theorem 2). After that, for every

subspace PA
I that has not yet been searched, we compute the smallest partition of I in Z,

denoted partitionI (steps 6 to 8). This partition simply groups all singletons together in the
PFG− case, and every pair of singletons in the PFG+ case (see how partitionI is initialized
in Algorithm 1.1). For example, given I = [1, 1, 1, 3], we have partitionI = {[1, 1, 1], [3]}
in PFG−, and partitionI = {[1], [1, 1], [3]} in PFG+. As described earlier, the size of the
biggest such partition(s) is what determines the ratio bound β, and what we need is to drop
this size in order to improve the bound. This is done in the main loop (steps 9 to 66), where
the size (i.e., the bound β) drops by 1 after every iteration. More specifically, we build a
matrix such that: (i) every row corresponds to one of the biggest partitions (steps 10 to
12), and (ii) every column corresponds to a combination that reduces the size of at least one
of those partitions (steps 13 to 17), and (iii) the matrix at row r and column c is assigned
a value of “1” if the combination at column c reduces the size of the partition at row r,
otherwise it is assigned a value “0” (steps 19 to 27). An example of such a matrix can be
seen in Figure 4. After that, for every column c, we store in subspace[c] the subspace that
needs to be searched (i.e., needs to be added to Y ′) such that the combination corresponding
to column c is observed with its maximum value (steps 28 to 34). For example, given 10
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agents, and given the combination [3, 4], the subspace that needs to be searched would be
[1, 1, 1, 3, 4] in PFG−, and [3, 3, 4] in PFG+ (see Theorem 1). An integer solver is then used
to find a set of columns such that, for every row, there exists at least one column in which
the value is “1”. This solver takes into consideration the “cost” of every column, which is
computed in steps 35 to 41. In more detail, the cost of a given column is the size of the
corresponding subspace, unless that subspace has already been searched, in which case the
cost is 0. The integer formulation is as follows:

Minimize

|columns|∑
c=1

λ[c]× cost[c]

s.t. ∀r ∈ {1, · · · , |rows|},
|columns|∑

c=1

λ[c]×matrix[r][c] ≥ 1

∀c ∈ {1, · · · , |columns|}, λ[c] ∈ {0, 1}

An important point to note, here, is that different columns may have the same corresponding
subspace. For example, given a PFG+ setting with 10 agents, a column corresponding to the
combination [5, 1], and another corresponding to [4, 1], both require searching PA

[5,4,1]. Sim-

ilarly, the columns corresponding to [7, 1], [7, 1, 1] and [1, 1, 1] all require searching PA
[7,1,1,1].

This means that if we “pay the cost” of adding one of these combinations to Z (i.e., if
we search the subspace in which this combination appears with its maximum value), then
we can add the other combinations to Z “at no extra cost”. To take this into account,
all such columns need to be combined into one. More specifically, given a set of columns
c1I , c

2
I , . . . , c

δ
I that require searching PA

I , we combine them all into one column, say cδI , as
follows: For every row r, we set matrix[r][cδI ] = 1 if there exists at least one column ckI such
that matrix[r][ckI ] = 1, otherwise we set matrix[r][cδI ] = 0. As for the remaining columns,

i.e., cjI : j �= 1, we set matrix[r][cjI ] = 0. In Figure 4, for example, since columns 2 and 9
require searching one subspace, namely PA

[5,4,1], we can combine them into one column, say

column 9, by setting matrix[1][9] = 1, matrix[2][9] = 1, and marix[3][9] = 1, and setting
matrix[r][2] = 0 for every row r. Note that the cost of both columns remains unchanged.
Once the integer solver finds the required columns (step 53), we search the subspace that
corresponds to each of these columns (steps 54 to 58). Finally, for every subspace PA

I that
has not yet been searched, we update partitionI to take into consideration the combinations
that have just been observed with their maximum values (steps 59 to 65). For example, given
partition[2,2,3,3] = {[2], [2], [3, 3]}, and given that we searched the subspace that corresponds
to the combination [2, 2], then this can be interpreted as adding [2, 2] to Z. As a result, we
update partition[2,2,3,3] by setting it to {[2, 2], [3, 3]}.

4.4. Preprocessing

Before detailing the preprocessing procedure, we first discuss its underlying theoretical back-
ground. In particular, the main theoretical results upon which we build are as follows:

Lemma 1. Given the integer partition graph of s (i.e., G(Is)), let G(Is)s
′
denote the part

of G(Is) in which every node (i.e., integer partition) contains at least s′ integers that are
equal to 1 (where s′ < s). Then, if we remove those s′ parts from every node in G(Is)s

′
,

then G(Is)s
′
becomes identical to G(Is−s′).
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Algorithm 1 Lowering the ratio bound with further search.

1: if PFG− then
2: Search PA

[n]
,PA

[n−1,1]
,PA

[n−2,1,1]
, · · · ,PA

[1,1,··· ,1].

3: else
4: Search PA

I : |I| ≤ 2 and then search PA
[n−2,1,1]

.

5: end if
6: for I ∈ In such that searched(PA

I ) = 0 do
7: initialize(partitionI). {see Algorithm 1.1}
8: end for
9: for β =

⌈
n
2

⌉
down to 2 {main loop} do

10: r ← 1; c ← 1.
11: for I ∈ In such that searched(PA

I ) = 0 and |partitionI | = β do
12: rows[r] ← partitionI ; r ← r + 1.
13: for I′, I′′ ∈ partitionI do
14: if I′

⊎
I′′ /∈ columns then

15: columns[c] ← I′
⊎

I′′; c ← c+ 1.
16: end if
17: end for
18: end for
19: for r = 1 to |rows| do
20: for c = 1 to |columns| do
21: if ∃I′, I′′ ∈ rows[r] : I′

⊎
I′′ = columns[c] then

22: matrix[r][c] ← 1.
23: else
24: matrix[r][c] ← 0.
25: end if
26: end for
27: end for
28: for c = 1 to |columns| do
29: if PFG− then
30: subspace[c] ← PA

columns[c]
⊎

I′ : I
′ ∈ In−|columns[c]|, I′ = [1, . . . , 1].

31: else
32: subspace[c] ← PA

columns[c]
⊎

I′ : I
′ ∈ In−|columns[c]|, I′ = [n− |columns[c]|].

33: end if
34: end for
35: for c = 1 to |columns| do
36: if searched(PA

subspace[c]
) = 1 then

37: cost[c] ← 0
38: else
39: cost[c] ← |subspace[c]|
40: end if
41: end for
42: for c = 1 to |columns| − 1 do
43: for c′ = c+ 1 to |columns| do
44: if subspace[c] = subspace[c′] then
45: for r = 1 to |rows| do
46: if matrix[r][c′] = 1 then
47: matrix[r][c′] ← 0; matrix[r][c] ← 1
48: end if
49: end for
50: end if
51: end for
52: end for
53: λ ← integerSolver(matrix, cost) {call the integer solver}
54: for c = 1 to |columns| do
55: if λ[c] = 1 then
56: Search through subspace[c].
57: end if
58: end for
59: for I ∈ In such that searched(PA

I ) = 0 do
60: for c = 1 to |columns| do
61: if λ[c] = 1 and ∃I′, I′′ ∈ partitionI such that I′

⊎
I′′ = columns[c] then

62: partitionI ← partitionI \ {I′, I′′} ∪ {I′
⊎

I′′}
63: end if
64: end for
65: end for
66: end for

67: Search through the remaining coalition structures. {This is to drop β from 2 to 1.}
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Algorithm 1.1 initilize(partitionI); part of Algorithm 1.
1: partitionI ← ∅
2: for i ∈ I, i > 1 do
3: partitionI ← partitionI ∪ {[i]}
4: end for
5: if PFG− then
6: I′ ← [1, · · · , 1] : |I′| = multiplicity(1, I)
7: partitionI ← partitionI ∪ I′

8: else
9: I′ ← [1, 1]

10: for k = 1 to �multiplicity(1, I)/2� do
11: partitionI ← partitionI ∪ I′

12: end for
13: if �multiplicity(1, I)/2� �= �multiplicity(1, I)/2� then
14: partitionI ← partitionI ∪ [1]
15: end if

16: end if

An example is shown in Figure 5. What is interesting is that, by removing [1, 1] from
every node in G(I6)2 for example, then we will not only get all the integer partitions in I4,
but these integer partitions will also be ordered and connected in exactly the same way as
they are in G(I4). This particular observation will be used in our preprocessing algorithm
as we will see later in this section. Now, we give the main theorem:

Figure 5: The figure shows how the integer partitions of 4 and 5 appear in the integer partition of 6.

Theorem 4. Consider a PFG− (PFG+) setting. Then, given a coalition C ⊆ C and a
partition P ∈ PC , any coalition structure containing P can be pruned from the search space
if there exists another partition P ′ ∈ PC such that:

∀p′ ∈ P ′, ∃p ∈ P : p′ ⊆ (⊇) p and UBP ≤ LBP ′
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Proof. Given a PFG− (PFG+) setting, and given two partitions P, P ′ ∈ PC such that:

∀p′ ∈ P ′, ∃p ∈ P : p′ ⊆ (⊇) p and UBP ≤ LBP ′
, we will prove that, for any coalition

structure CS ⊇ P , there exists another coalition structure CS ′ ⊇ P ′ such that W (CS ) ≤
W (CS ′).

Since P is a partition of C, then CS\P must be a partition of C. In particular, let
P = CS\P , then of course, CS = P ∪ P . Now, by replacing P with P ′, we end up with a
different coalition structure, denoted CS ′, such that: CS ′ = P ′ ∪ P . In this case, we have:

W (CS) = W (P,CS) +W (P ,CS) and W (CS ′) = W (P ′,CS ′) +W (P ,CS ′) (11)

Since we have: ∀p′ ∈ P ′, ∃p ∈ P : p′ ⊆ (⊇) p, then every coalition in P ′ (P ) is a subset of
some coalition in P (P ′). Based on this, as well as the fact that P and P ′ are partitions of
the same coalition, we find that P (P ′) can be reached from P ′ (P ) by performing multiple
steps, each involving the merging of two coalitions from P ′ (P ). This, in turn, implies that
CS (CS ′) can be reached from CS ′ (CS ) by performing merging steps that do not involve
any of the coalitions in P . As a result, and due to negative (positive) externalities, we have:

V (P ,CS ) ≤ V (P ,CS ′) (12)

On the other hand, since UBP ≤ LBP ′ , then we have:

V (P,CS ) ≤ V (P ′,CS ) (13)

From (11), (12), and (13), we find that V (CS ) ≤ V (CS ′). This, in turn, implies that CS
can be pruned from the search space.

�

From Theorem 4, we can see that the following lemma holds:

Lemma 2. Consider a PFG− (PFG+) setting. Then, given an integer partition I ∈ Is :
s ≤ n, any subspace represented by an integer partition G ∈ In : I ⊆ G can be pruned from
the search space if there exists another integer partition I ′ ∈ Is such that:

∀i ∈ I (I ′), ∃J ⊆ I ′(I) :
∑
j∈J

= i and UBI ≤ LBI′

The condition ∀i ∈ I (I ′), ∃J ⊆ I ′(I) :
∑

j∈J = i in Lemma 2 implies that the number of
parts in I is smaller (greater) than the number of parts in I ′, and that I and I ′ are connected
in the integer partition graph of s via a series of nodes belonging to consequent levels of the
graph. In this case, we use the notation: I → I ′ (I ′ → I). In Figure 5, for example, we
have: [1, 5] → [1, 1, 1, 1, 2] ([1, 1, 1, 1, 2] → [1, 5]).

We can now show how both Lemma 1 and Lemma 2 are used in our preprocessing
algorithm to prune subspaces (see Algorithm 2). Basically, the algorithm tries to find the
integer partitions in I2 that can be pruned using Lemma 2, and then moves to I3, and
then I4, and so on until it reaches In. The way it moves from Is−1 to Is is done using
the observation from Lemma 1. More specifically, the algorithm adds [1] to every integer
partition in Is−1, and then combines the resulting integer partitions with those in Is that
do not contain 1. To generate the integer partitions of s that do not contain any 1s, we use
getIntParts(s, 2). This function can be implemented using any algorithm that generates
doubly-restricted10 integer partitions, e.g., the Parta algorithm (Riha and James, 1974). —

10Unlike restricted integer partitions, where the parts are only bounded by a maximum value, doubly-
restricted integer partitions consist of parts that are also bounded by a minimum value. getIntParts(s, 2)
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Algorithm 2 Prune subspaces based on Lemma 2.

1: Î ← {[1]} {Initialization}
2: for s = 2 to n do
3: for I ∈ Î {Add [1] to every element in Î} do
4: I ← I

⊎
[1]

5: end for

6: Î ← Î ∪ getIntParts(s,2)

7: for I ∈ Î do
8: if ( PFG− and ∃I′ ∈ Î : I → I′, UBI ≤ LBI′ )

or (PFG+ and ∃I′ ∈ Î : I′ → I, UBI ≤ LBI′ ) then

9: Î ← Î\I {remove I from Î}
10: end if
11: end for
12: end for

13: return Î

4.5. Searching a Subspace

In this section, we briefly describe the searching method in the IP algorithm, and then show
how it can be revised for the PFG+/PFG− case.

As mentioned earlier in Section 3, the IP algorithm computes, for all I ∈ In, upper
and lower bounds on the value of the best coalition structure in PA

I as follows: UBI =∑
s∈I Maxs, LBI =

∑
s∈I Avgs. These bounds are used to identify, and consequently

prune, unpromising subspaces. As for the promising ones, IP searches them one at a time,
unless a value is found that is higher than the upper bound of another subspace, in which
case, that subspace no longer needs to be searched. The order in which the algorithm
searches through these subspaces is based on their upper bounds (i.e., it starts with the
one with the highest upper bound, and then the second-highest and so on). Searching a
subspace PA

I : I = [i1, i2, . . . , i|I|] is carried out using depth-first search combined with
branch-and-bound. Basically, for every coalition of size i1, denoted C1, the algorithm finds
the coalitions of size i2 that do not overlap with C1, and for every such coalition, denoted
C2, the algorithm finds the coalitions of size i3 that do not overlap with C1 and C2, and
so on. This is repeated until we reach the coalitions of size i|I| that do not overlap with
C1, C2, . . . , C|I|−1. For every such coalition, denoted C|I|, we would have a coalition structure
CS = {C1, . . . , C|I|} ∈ PA

I . This process is repeated in such a way that is guaranteed to go
through every coalition structure in PA

I exactly once. To speed up the search, IP applies a
branch-and-bound technique as follows. If we denote by CS∗∗ the best coalition structure
found so far, then, before the algorithm goes through the coalitions of size ix that do not
overlap with C1, . . . , Cx−1, it checks whether the following holds:11

v(C1) + . . .+ v(Cx−1) +Maxix + . . .+Maxi|I| ≤ V (CS∗∗)

If the above holds, then there is no need to go through any of the coalitions of size ix
that do not overlap with C1, . . . , Cx−1. This is because any coalition structure containing
C1, . . . , Cx−1 cannot possibly be better than CS∗∗.

The main difference in our PFG−/PFG+ setting (compared to CFGs) is that, instead
of having one value for every coalition C, we have a maximum value UBC and a minimum

sets the minimum value to 2 so that the resulting integer partitions do not contain any 1s.
11Here, v(C) is used (instead of w(C,CS)) to refer to the value of C in CS . This is because IP deals with

CFGs where every coalition has one value, regardless of the coalition structure to which it belongs.
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value LBC (see Section 4.1 for more details). Based on this, we modify IP as follows:

• We add a preprocessing stage, which consists of Algorithm 1 (to prune unpromising
subspaces) and Algorithm 2 (to identify the order by which the remaining subspaces
need to be searched).

• We compute Maxs and Avgs as follows:

∀s ≤ n,Maxs = maxC⊆A:|C|=s UBC and Avgs = avgC⊆A:|C|=sLBC .

• The order in which we search through subspaces is based on our anytime algorithm
for reducing the ratio bound β (i.e., we always search the subspaces that are necessary
to drop the current ratio bound).

• While searching a subspace PA
I : I = [i1, i2, . . . , i|I|], and before going through the

coalitions of size ix that do not overlap with C1, . . . , Cx−1, we check whether the
following holds, where UB{C1,...,Cx−1} is computed as in Section 4.1:

UB{C1,...,Cx−1} +Maxix + . . .+Maxi|I| < V (CS∗∗) (14)

5. Performance Evaluation

In this section, we propose an equation for generating random input instances to be used
for evaluating CSG algorithms in PFG+/PFG− (Section 5.1). This equation is then used
while evaluating our IP+/− algorithm (Section 5.2).

5.1. Input Generation

In order to evaluate our IP+/− algorithm, we need to be able to generate random input
instances of PFG+(PFG−) such that only positive (negative) externalities occur whenever
two coalitions merge. This means, in particular, that for any two arbitrary coalition struc-
tures, CS and CS ′, such that CS ′ can be created from CS by a series of coalition mergers,
the value of any coalition not involved in these mergers must not be smaller (greater) in
CS ′ than in CS . Next, we provide an equation for generating random input instances,
and prove that the resulting partition function is guaranteed to satisfy the conditions of
PFG+/PFG−.

To this end, let us assume, without loss of generality, that the agents in every coalition
are ordered ascendingly, and that the coalitions in any partition are also ordered ascendingly
based on the smallest12 agent in each coalition. Now, let l(ai, C) be the location of agent
ai in C (e.g., l(a6, {a2, a5, a6, a9}) = 3), and let l(ai, P ) be the location of the coalition in
P that contains ai (e.g., l(a6, {{a1, a7}, {a3, a5, a6}, {a4, a9}}) = 2). With these definitions
in place, we now show how to generate the coalition values such that the PFG− (PFG+)
condition is met. At first, for every coalition C, we generate the following non-negative

random values: vC and eC and eC,1, eC,2, · · · , eC,|C| such that
∑|C|

j=1 eC,j = eC . After that,
for any coalition structure CS � C, we set the value of C as follows:

w(C,CS) = vC − (+)
∑

ai∈C

eC,l(ai,C) ∗ (1−
l(ai, CS\{C})− 1

|C|
) (15)

12For any two agents ai, aj ∈ A, we say that ai is smaller than aj if i < j.
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In more detail, vC represents the value of coalition C in the absence of any externalities,
while the remainder of the left hand side of (15) represents the externality induced upon C
in CS. Note that this externality is always smaller than, or equal to, eC . This comes from
the fact that: ∀ai ∈ C : l(ai, CS\{C}) ≥ 1, which implies that:

∑
ai∈C

eC,l(ai,C) ∗ (1−
l(ai,CS\{C})−1

|C| ) ≤
∑

ai∈C

eC,l(ai,C) ∗ (1−
1−1
|C| )

≤
∑

ai∈C

eC,l(ai,C)

≤ eC

Theorem 5. By setting the value of each coalition as per equation (15), we obtain a PFG−

(PFG+) setting.

Proof. Given a partition P and a coalition p ∈ P , let s(p) denote the smallest agent in p,
and let s(p, P ) be defined as follows:

s(p, P ) = {s(p̃) : p̃ ∈ P, s(p̃) < s(p)} (16)

In other words, s(p, P ) contains the smallest agent from every coalition that appears
before p in P , e.g., s({a4, a9}, {{a1, a7}, {a3, a5, a6}, {a4, a9}}) = {a1, a3}.

Next, given a coalition C, and given any two partitions P, P ′ ∈ PC such that ∀p′ ∈
P ′, ∃p ∈ P : p′ ⊆ p, we will prove that the following holds:

v(C, {C} ∪ P ) ≤ (≥) v(C, {C} ∪ P ′) (17)

From (15), we find that the inequality in (17) holds if, and only if:

∑

ai∈C

eC,l(ai,C) ∗ (1−
l(ai, P )− 1

|C|
) ≥

∑

ai∈C

eC,l(ai,C) ∗ (1−
l(ai, P

′)− 1

|C|
)

By removing eC,l(ai,C), we find that:

∑

ai∈C

(1− l(ai, P )− 1

|C|
) ≥

∑

ai∈C

(1− l(ai, P
′)− 1

|C|
)

∑

ai∈C

l(ai, P )− 1

|C|
≤

∑

ai∈C

l(ai, P
′)− 1

|C|
∑

ai∈C

l(ai, P ) ≤
∑

ai∈C

l(ai, P
′)

Then, to prove that (17) holds, it is sufficient to prove that:

∀ai ∈ C, l(ai, P ) ≤ l(ai, P
′) (18)

To this end, for any agent ai ∈ C, let pi, p
′
i be the coalitions that contain ai in P, P ′

respectively. Then, to prove that (18) holds, we need to prove that the number of coalitions
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that appear before pi in P is smaller than, or equal to, the number of coalitions that appear
before p′i in P ′. In other words, we need to prove that: |s(pi, P )| ≤ |s(p′i, P ′)|. This can be
done by proving that:

s(pi, P ) ⊆ s(p′i, P
′)

In order to do so, we will first prove that all the agents in s(pi, P ) belong to s(p′i, P
′).

After that, we will prove that there could be agents in s(p′i, P
′) that do not belong to s(pi, P ).

To this end, note that:

(a). Every agent in s(pi, P ) appears in a different coalition in P ′. In other words, no
coalition in P ′ contains more than one agent from s(pi, P ). Otherwise, if two, or
more, agents from s(pi, P ) appear in the same coalition in P ′, then this coalition would
not be a subset of a coalition in P , which contradicts with the following assumption:
∀p′ ∈ P ′, ∃p ∈ P : p′ ⊆ p.

(b). s(pi) is smaller than, or equal to, s(p′i). This is because p′i is a subset of pi, which
comes from the fact that ai ∈ pi and ai ∈ p′i and ∀p′ ∈ P ′, ∃p ∈ P : p′ ⊆ p.

From the above two observations, as well as (16), we find that every agent in s(pi, P ) belongs
to s(p′i, P

′). What is left is to show that there could be agents in s(p′i, P
′) that do not belong

to s(pi, P ). We show this through the following example. Assume that i = 6, and that:

P = {{a1, a8}, {a3, a4, a9}, {a5, a6, a7}}
P ′ = {{a1, a8}, {a3, a9}, {a4}, {a5, a7}, {a6}}

In this case: p6 = {a5, a6, a7} and p′6 = {a6}. As can be seen: s(p6, P ) = {a1, a3}, while
s(p′6, P

′) = {a1, a3, a4, a5}.

�

Importantly, equation (15) places no assumptions/restrictions on vC and eC . In other
words, these can be sampled from any distribution, e.g., Gaussian, Uniform, etc. Also note
that, for any coalition C and coalition structure CS � C, the total externality imposed upon
C is smaller than, or equal to, eC . This gives the ability to place an upper bound on the
externality. For example, in order to simulate a setting where a coalition’s value can only
increase (decrease) by at most 30% due to externalies, we simply set eC = 0.3 ∗ vC .

Next, we analyze the memory required to store different input instances. In particular,
while the resulting partition function consists of O(nn) values, we will prove that it only
requires storing O(n2n) values.

Theorem 6. An input instance generated as per equation (15) can be stored in memory by
maintaining O(n2n) values.

Proof. From equation (15), we can see that for every coalition C the equation only requires
storing vC and eC,1, eC,2, · · · , eC,|C|.

13 Moreover, for all C ∈ C, we have: |C| ≤ (n−1). This
means the number of values that need to be stored for any coalition C ∈ C is less than, or
equal to, n. The total number of values is therefore less than n ∗ 2n.

�

13Note that we do not need to store eC as it can be computed by simply summing the values:
eC,1, eC,2, · · · , eC,|C|.
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5.2. Performance Evaluation

As mentioned earlier in the introduction, to establish progressively better ratio bounds in
a PFG setting, we propose (i) a way of dividing the search space into subspaces, and (ii)
a sequence in which these subspaces must be searched, so that the bound is improved after
each subspace. While there are two algorithms that do exactly that, namely Sandholm et
al.’s (1999) and Dang and Jennings’s (2004), these are designed for CFGs, and so cannot
be applied in a PFG setting. Nevertheless, since ours is the first such algorithm for PFGs,
and since CFGs are a special case of PFGs, then we will benchmark ours against those
two algorithms (in a CFG setting). Intuitively, one could expect our algorithm to perform
worse than the others, especially since they exploit the special properties of CFGs, while
ours does not. In more detail, the CFG algorithms take advantage of the assumption
that every coalition has the same value regardless of the coalition structure in which it is
embedded. Obviously, we do not take any such advantage since our algorithm is originally
designed for PFGs.

Given 24 agents, Figure 6 illustrates (using a log scale) the ratio bound as a function
of the number of coalition structures searched.14 As can be seen, given a PFG+ setting,
our algorithm is significantly faster than the existing CFG ones. For example, the number
of coalition structures required by our algorithm to establish a ratio bound of 3 is only
0.001% of that required by Sandholm et al. (1999), and only 1% of that required by Dang
and Jennings (2004). On the other hand, given a PFG− setting, our algorithm requires
searching more coalition structures (compared to other algorithms) in order to establish
its first ratio bound (see Theorem 3). However, once it establishes this bound, which only
requires searching 4 × 10−11 of the space, it becomes significantly faster, compared to the
others. For example, the number of coalition structures to establish a ratio bound of 3 is only
0.0007% and 0.5% compared to Sandholm et al.’s and Dang and Jennings’s, respectively.

The main reason behind this gain is that our steps are defined in a much more informed
manner compared to the other algorithms. More specifically, every step in Sandholm et
al.’s algorithm searches all coalition structures of certain size, and every step in Dang and
Jennings’s algorithm searches all coalition structures where the biggest coalition is of a
certain size. Our results show that these are not the best steps that one can take to drop
the bound. By tailoring our steps to suite our objective, which is to rapidly reduce the
bound, we manage to outperform those algorithms.

So far, we have evaluated the way IP+/− divides the search space, and the sequence
in which the subspaces are searched. Next, we evaluate the algorithm’s ability to find
progressively better solutions in various test settings. In this context, we tested our algorithm
given:

• different numbers of agents, ranging from 10 to 20;15

• different types of externalities (i.e., positive and negative);

• different percentages of externalities ranging from 0% to 100%. Here, when reporting
a result given x% externality, we mean that the total externality affecting any given
coalition is at most x% of its value. More specifically, for any coalition C, the value
eC is sampled from the uniform distribution U(0, v(C) ∗ x/100).

14Similar patterns were observed given different numbers of agents.
15The results are reported as an average of 500 runs given n ∈ {10, 11, 12}, 300 runs given n ∈ {13, 14, 15},

and 100 runs given n ∈ {16, · · · , 20}
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Figure 6: Given 24 agents, the figure shows the ratio bound as a function of the number of searched coalition
structures (log scale).

• different value distributions. Specifically, we use the following standard distributions
in the CSG literature (Larson and Sandholm, 2000; Rahwan et al., 2009a):

(a). Normal: v(C) ∼ |C| ×N(µ, σ2) where µ = 1 and σ = 0.1.
(b). Uniform: v(C) ∼ |C| × U(a, b) where a = 0 and b = 1.
(c). NDCS: v(C) ∼ N(µ, σ2), where µ = |C| and σ =

√
|C|.

Every combination of the above represents a different setting. For example, a possible
setting would be: 18 agents, with positive externalities, with percentage of externalities
equal to 10%, and with Uniform distribution. Hence, given the large number of possible
settings, we only report the results for some of them, and that is whenever similar patterns
are observed for the remaining ones (e.g., if we report a certain result for only negative
externalities, then this implicitly means that similar results where observed for positive
externalities).

In all our experiments, the process of calculating the sequence of subspaces took insignif-
icant time and space, e.g., less than 1 second and less than 15kb of memory for each of
the aforementioned settings. This is because this process deals with the space of integer
partitions, not the space of coalition structures (e.g., given 20 agents, there are only 627
integer partitions, as opposed to more than 5 × 1013 coalition structures). Furthermore,
the process of calculating the sequence of subspaces needs to be done once for any given
number of agents; the sequence can then be stored and used for different problem instances
(unlike the process of searching the subspaces, which needs to be repeated for each problem
instance).

Given negative externalities, Figure 7 shows on a log scale the total run time of IP+/−

given different numbers of agents, where time is measured as the clock time (in milliseconds)
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on a PC with 8 Intel 2.67GHz processors and 12GB of RAM. As can be seen, the growth rate
of the run-time is similar to O(2.7n) given the NDCS distribution, and similar to O(2.32n)
given Uniform and Normal distributions. This is significantly smaller than O(nn) — the
growth rate of the size of the search space. This difference comes from the algorithm’s ability
to identify, and thus prune, unpromising subspaces and coalition structures.

Figure 7: Given negative externalities, the figure shows on a log scale the total run time of IP+/− given
different numbers of agents.

Next, we test our algorithm given different percentages of externalities. In particular,
Figure 8 shows how a change in this percentage affects both the total run time and the
number of expansions made by the algorithm.16 As expected, there is a direct correlation
between the two results. The figure also shows that the number of expansions is always
slightly more in PFG− than in PFG+. This is because the effectiveness of the branch-and-
bound technique, which is directly reflected in the number of expansions made, is slightly less
in PFG−. To better understand the reason behind this, we need to analyze the effect that
different externalities have on equation (14) — the main equation in the branch-and-bound
technique. Intuitively, while both sides of the equation increase in PFG+ and decrease in
PFG−, the ratio between the two sides becomes different in PFG+ than in PFG−, resulting
in a change in the effectiveness of branch-and-bound. In more detail:

• the term V (CS∗∗) in equation (14) increases in PFG+ and decreases in PFG−.

• the terms “Maxix+. . .+Maxi|I|” increases in PFG+ but remain unchanged in PFG−.

16Recall that each subspace is searched using depth-first search. The number of expansions is then the
total number of nodes that were searched by the algorithm in different subspaces.
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Figure 8: Given 20 agents, the figure shows the total run time of IP+/− (left-hand side) and the total
number of expansions made by IP+/− in the search tree (right-hand side) given different percentages of
externalities. 33

• the term“UB{C1,...,Cx−1}” increasees in PFG+ and decreases in PFG−, except for
when x = 0, in which case it remains unchanged in PFG−.

The above means that the increase in the left-hand side of equation (14) in PFG+ is greater
than the decrease in PFG−. This, in turn, implies that the number of prunings is greater
in PFG+ than in PFG−.

Next, we analyze how the solution quality and bound quality improve during run time.
Observe that the bound that is evaluated here is different from the one that was evaluated
earlier in Figure 6: here, the bound is calculated based on the coalition values of the problem
instance at hand, while the previous bound is calculated based on the sequence of subspaces
(i.e., it is independent of the coalition values).

Figure 9 shows how the solution quality and bound quality improve during run time, and
that is given 20 agents and negative externalities.17 In more detail, the X-axis in the figure
corresponds to the percentage of time that has elapsed, with 0% being the time at which
the algorithm starts, and 100% being the time at which it terminates. For every percentage
of time t%, we report the following:

• IP+/− solution quality : This is computed as the ratio between the value of the best
coalition structure (found at time t%) and the value of the optimal coalition structure
(found at time 100%).

• IP+/− bound quality : This is computed as the ratio between the value of the best
coalition structure found and the maximum upper bound of all remaining subspaces
(i.e., those that were neither searched nor pruned).

• Theoretical bound β: This is computed as shown in Section 4.3.

As can be seen, the solution quality exceeds 90% in less than 1% of the run-time given
the Normal and Uniform distributions, and less than 10% given the NDCS distribution.
Moreover, the bound quality is significantly better than the theoretical, worst-case, bound.

Finally, given negative externalities, Figure 10 shows on a log scale the percentage of
space that has been searched by IP+/− given different numbers of agents. This is computed
as the ratio between the number of expansions made by the algorithm and the total number
of expansions in the search space. As can be seen, the algorithm only searches an extremely
small fraction of the space (e.g., less than 0.00001% given 20 agents). Furthermore, this
fraction gets consistently smaller as the number of agents increases.

6. Conclusions

The Coalition Structure Generation (CSG) problem within the AI community has been
studied almost exclusively in the context of characteristic function games where no exter-
nalities are allowed. This is despite the fact that, in many real-world settings, externalities
do exist and need to be accounted for. Taking externalities into consideration makes the
CSG problem significantly more challenging as the input size grows from O(2n) to O(nn).

17Observer that this bound is calculated using information that was extracted from the problem instance at
hand (unlike the bound that was calculated earlier based on the sequence of subspaces, which is independent
of the problem instance). Thus, it is different from the bound that was calculated earlier based on the
sequence of subspaces (which is independent of the problem instance).
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Figure 8: Given 20 agents, the figure shows the total run time of IP+/− (left-hand side) and the total
number of expansions made by IP+/− in the search tree (right-hand side) given different percentages of
externalities. 33
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Figure 9: Given 20 agents and negative externalities, the figure shows how the solution quality and bound
quality improve during the run time of IP+/−.
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Figure 10: Given negative externalities, the figure shows on a log scale the percentages of space that has
been searched by IP+/− given different numbers of agents.
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Against this background, we provide in this paper the first computational study on
CSG in partition function games. More specifically, we develop a novel, anytime algorithm
that solves the CSG problem in two important classes of these games, namely PFG+ and
PFG−, where externalities are weakly positive in PFG+ and weakly negative in PFG−.
Our algorithm capitalizes upon the following theoretical results. Firstly, we prove that it
is possible to bound the values of any group of coalitions in PFG+/PFG−. Secondly,
we identify the set of coalition structures that has to be searched in order to establish a
worst-case bound on solution quality. Thirdly, we prove that, by traversing the space of
possible solutions in a particular manner, we are guaranteed to improve this worst-case
bound. Fourthly, we show that, by satisfying certain conditions, it is possible to prune parts
of the search space.

To test our algorithm, we propose an equation for generating random input instances,
and prove that the resulting partition function is guaranteed to satisfy the conditions of
PFG+/PFG−. We also prove that this function, which consists of O(nn) values, only
requires storing O(2n) values in memory. This function can be used as a standard benchmark
for evaluating any potential CSG algorithms that could be developed in the future for
PFG+/PFG−.

Since there are no previous CSG algorithms for games with externalities, we benchmark
our algorithm against other state-of-the-art approaches in games where no externalities
are present. Surprisingly, we find that, as far as worst-case guarantees are concerned, our
algorithm outperforms the others by orders of magnitude despite the fact that they take
advantage of the special properties of games with no externalities, while our algorithm does
not.

With this paper, we have laid the foundations for further work on the CSG problem in
partition functions games. In particular, we are keen to develop efficient CSG algorithm
for classes of PFGs other than those considered in this paper. Indeed, building upon our
theoretical results, the first such attempt was recently proposed by Banerjee and Landon
(2010), where externalities are influenced by the agents’ types. However, algorithms for
more general classes are yet to be developed. Another interesting direction is to extend our
idea of generating random instances of PFGs using only O(n2n) space, and to use this idea
as a building block for developing concise representations of various classes of PFGs.
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Appendix A. Summary of Notation

A The set of agents.

ai Agent in A.

n The number of agents in A.

C A coalition.

C Agents in A that do not belong to C, i.e., C = A\C.

C The set of all coalitions over A.
Cs The set of all coalitions of size s.
CS A coalition structure.

CS∗ An optimal coalition structure.

PA
The set of all coalition structures.

PA
s

The set of all coalition structures of size s, i.e., level s in the coalition
structure graph.

PA
I

The set of all coalition structures in which coalition sizes match the
parts in integer partition I.

PC The set of all partitions of coalition C.

PC
I

The set of all partitions of C in which coalition sizes match the parts
in integer partition I.

P Partition in PC .
p Element of a partition P .

(C,CS) Coalition C embedded in coalition structure CS .

w(C,CS) The value of C in CS , i.e., the value of embedded coalition (C,CS).

W (P,CS) The value of P in CS .

W (CS) The value of coalition structure CS .

v(C) The value of coalition C.

UBA
I Upper bound on the value of the best CS in PA

I .

UBC
I Upper bound on the values of the partitions in PC

I .

UBC Upper bound on the value of coalition C.

UBP Upper bound on the value of partition P .

LBA
I Lower bound on the value of the best CS in PA

I .

LBC
I Lower bound on the values of the partitions in PC

I .

LBC
Lower bound on the value of coalition C.

LBP Lower bound on the value of partition P .

Ik The set of all possible integer partition of number k.

G(Ik) The integer partition graph of k.

G(Ik
s ) Level s in the integer partition graph of k.
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