
>	 Praktyka Internetu	 < 67 >

Halina Przymusińska 

Logic Programming Tools for Formal Software  

Specification 

Streszczenie
Jednym z najistotniejszych problemów w inżynierii oprogramowania jest opracowanie i za-

wężenie wymagań dotyczących oprogramowania w celu określenia dokładnych specyfikacji, a tak-
że kwestia przekształcenia specyfikacji dotyczących złożonych problemów w wykonywalne kody. 
Głównym powodem podjęcia się badania formalnych specyfikacji jest udowodnienie, że oprogra-
mowanie produkowane jest z nimi zgodne (chodzi o weryfikowalność). Artykuł ukazuje, iż pro-
gramowanie logiczne połączone z rachunkiem sytuacyjnym można z powodzeniem stosować jako 
formalną specyfikację oprogramowania.

Introduction
Two of the most important problems in software engineering are the problem of elaborating 

and refining software requirements into accurate specifications, and the problem of transforming 
specifications of complicated problems into executable code. Proving that software products produ-
ced agree with the specifications (verifiability) is the main reason for pursuing the study of formal 
specifications. Good formal specifications should also have the following properties:
■■ �it should be relatively easy to test whether formal specifications correspond to the informal 

ones, and 
■■ �it should be easy to modify specifications and therefore the corresponding codes according 

to additional or modified requirements. 
In current software engineering practice many formal specification methods are being used. 

Most of the specification languages used such as for example Z language have a robust mathematical 
symbolism available to them, but lack an appropriate procedural component, as we explain below. 

In [Kow87], R. Kowalski introduced logic programming as a tool which adds to a specification 
language an inference mechanism making it possible to execute specifications, for the sake of rapid 
prototyping. 

For our approach to logic specification it is essential that a precise meaning or semantics be 
associated with the programs considered. The developments in logic programming (see, for exam-
ple [Prz 81], [Prz 9O]) provide logic programs with very natural and intuitive declarative semantics. 
We argue here that logic programming coupled with situation calculus can be successfully used for 
formal software specification. Logic provides a rigorous specification of meaning which is context-
-free and easy to manipulate, exchange and reason about. It therefore seems to be a natural choice 
as a software specification language, or software specification formalism. 

To illustrate the proposed approach let us consider a formal specification for a storage al-
location system. The (basic) requirements that the specification was supposed to satisfy are the 
following: 
■■ �The storage allocator system models users and blocks of storage. Users request a block and 

the system allocates it, if the block is currently free. Users may also release a block which 
subsequently becomes free, provided that the block was actually owned by the user. 

■■ �Figure 1 displays some of a Z specification for a storage allocator, which is similar to that 
presented in [Woo89]. 



< 68 >	 Visiting Professors

RequestBlock 

SM 
u? : U 
b! : N 
r! : Report 

( free <> {} 
b! member free 
free’ = free \ {b!} 
dir’ = dir U {b! |-> u?} 
r! = okay ) 
v 
(free{} 
r! = fail 
free = free’ 
dir = dir’) 

Figure 1. Z language block request specification 

We propose that a logic programming specification be given in two components. The first 
component, which we characterize here as the semantic component, is a collection of logical formu-
las specifying the system requirements using what is known in the literature as situation calculus. 
It is rather straightforward to translate the English requirements statement above into the language 
of situation calculus. A listing is given in Figure 2. 

Situation calculus is a logic-based formalism which allows one to express the changes in the 
properties of objects as a result of the actions that take place. The language of situation calculus has 
predicates ‘holds’ and ‘affects’, a function symbol ‘result’, together with variables and constants for 
relations, actions and situations. Intuitively, ‘holds(P, S)’ means that property P holds in situation 
S, ‘affects(A,P,S)’ means that action A taking place in situation S affects property P, and ‘result(A, 
S)’ is the situation that results when action A is performed in situation S. 

holds(owns(U,B),result(allocate(B,U), S)) <- 
            holds(free(B), S). 
affects(free(B), allocate(B,U), S). 
holds(free(B), result(retrieve(U,B), S)) <- 
            holds(owns(U,B), S). 
affects(owns(U,B),retrieve(U,B), S).
 ;;  inertia/frame axiom 
holds(Property,result(Action, S)) <- 
            holds(Property, S), 
            ~ affect(Action,Property, S). 

Figure 2. Semantic specification 

The essential feature of the situation calculus is a logical characterization of which proper-
ties hold as the result of performing certain actions, and which properties are affected by the ac-
tions. The main intention of the semantic component is to capture the logical properties of the 
specification in a highly declarative form. We have written the logical clauses in the semantic com-
ponent in the form of Horn clauses, and we intend that the negation in the inertia axiom be treated 



>	 Praktyka Internetu	 < 69 >

as negation as failure to be true (when the formal semantics is specified). It is explicitly intended 
that appropriate formal semantics be associated with this semantic component, say, for example, 
well-founded semantics [Gel 91], but there is no requirement that the semantic component itself be 
an executable logic program. It is important to realize that the semantic component allows us to 
reason about the effects of different actions, but no actual action takes place and no explicit input 
data needs to be provided with the specification. 

For example, the provable assertion 
{holds(free(b1), s0), holds(free(b2), s0), holds(free(b3), s0),... }|=
          holds(owns(u1 ,b1), result(allocate(u2, b2), result(allocate(u1 ,b3), result(allocate(u1,b1), s0)))) 

follows logically in the semantic component. Here ‘ |=  ‘ is the usual logical consequence operator. 
A rough translation of this logical assertion is that once user u1 has been allocated block b1 (which 
requires that it was free previously), the subsequent actions of allocation of blocks b2 and b3 to users 
u2 and u3 respectively do not disturb the property of u1 owning b1. 

It is highly likely that realistic (and more complex) specifications could require more expressive 
power than that available currently in different extensions of logic programs. 

The other component of the logic specification is what we call the procedural component. 
This component is intended to be an executable logic program. The procedural component serves 
as an executable prototype for the intended software. A listing of the Prolog program for this com-
ponent is given in Figure 3. 

;; storage.pro 
;; free blocks and directory are asserted and retracted. 
allocate(U,B) : -
                        free(B),                                     ;;  find free 
                        retract(free(B)),                     ;; no longer free 
                        assertz(owns(U,B)).              ;; now allocated 
retrieve(U,B) :-
                        owns(U,B),                              ;;  find owned 
                        retract(owns(U,B)),              ;;  no longer owned 
                        assertz(free(B)).                    ;;  now free 
execute(request(U,B)) :-
                         allocate(U,B), 
                         report(”okay”). 
execute(request(U,B)) :-  report(”errNotFre”). 
execute(release(U,B)) :-
                         retrieve(U,B), 
                         report(”okay”). 
execute(release(U,B)) :-
                         free(B), 
                         report( “errBlockFree” ). 
execute(release(U,B)) : -
                         report(” errNotOwner”). 
;;  show allocation dump 
execute(dump) :- dump. 
;; and default 
execute(Nonsense) :- 
                         report (“errNonsense”).



< 70 >	 Visiting Professors

report(Message) :- display(“ “), display(Message), nl.
dump :- owns(U,B), write(owns(U,B)), display(“ “), fail.
dump :- nl.
;;  the driver for the executable prototype 
operate :-
      	             nl, 
      	             task(Task), 
       	             execute(Task), 
       	             operate. 
task(Task) :-
      	            display(”Task?> “), 
     	            read(Task), 
     	            nl. 
;; sample initialization 
free(b1).    free(b4). 
free(b2).    free(b5). 
free(b3). 

Figure 3. Procedural component 

The Prolog program obtained as a result of translating the semantic component into a proce-
dural one consists of two parts, one of which is a pure logic program (the first two Prolog clauses) 
and the second of which has the form of a loop monitoring and executing tasks, or providing initial 
conditions for a prototype (the other clauses). Execution of some tasks (such as a “request”) may 
change the declarative part while execution of others (such as “dump”) require only a query of the 
declarative part. The first kind of task corresponds to primary tasks which need to be characterized 
in the semantic component, whereas the other tasks correspond to derived tasks, which we curren-
tly believe do not need to be characterized in the semantic component. Likewise, the procedural 
component could characterize derived properties that were not specified in the semantic compo-
nent, but the procedural component must characterize primary properties of the semantic compo-
nent. (We did not illustrate this for the storage allocator.) Also, the correspondence between task 
names and action names is informal here. The basic formal correspondence between the semantic 
component and the procedural component involves a translation schema which might be pictured 
in simple cases as in Figure 4. 

;;  the group of related situation clauses
holds(prop1 ,result(action, S)) <-
            holds(prop2, S). 
holds(prop3,result(action, S)) <- 
            holds(prop2, S). 
holds(prop4,result(action, S)) <- 
                            holds(prop3 , S). 
affects(prop5,action, S) <- holds(prop2). 
affects(prop6,action, S) <- holds(prop3). 
;; is translated into Prolog clauses
action :- prop2, 
       	       retract(prop5), 
       	       assertz(prop 1), 
                      assertz(prop3). 



>	 Praktyka Internetu	 < 71 >

action :- prop3, 
                     retract(prop6), 
                     assertz(prop4). 

Figure 4. Translation 

Note that the “retracts” are done before the “asserts” in the Prolog clause. Figure 4 is inten-
ded to illustrate some patterns for translation. It is not intended to be a complete translator for all 
possible semantic specifications. For the storage allocator example, only one Prolog “action” clause 
was generated for each of “allocate” and “retrieve” actions. 

Figure 5 gives an indication of what the customer might see when the prototype is executed. 
The underlined parts are typed in by the “users”. 

?- operate. 
Task? > request(u1,B). 
    okay 
Task? > request(u5,b3). 
    okay 
Task? > dump. 
   owns(u1,b1)  owns(u5,b5) 

Figure 5. Sample prototype execution 

One problem with this approach is that parts of the Prolog program change due to the chan-
ges of situations as represented by the collection of facts known to be true at the given moment. 
Instead of a single logic program, we are dealing with a sequence of such programs which are obta-
ined by asserts and retracts. Asserts and retracts have no (direct) semantics associated with them. 
In the semantic component, the situation calculus is used to characterize the type of nonmonotonic 
reasoning in which changes of the world over time are crucial. (See [Ni180] chapter 7, for example.) 
Situation calculus allows us to formally describe the changes in a logic program that result from 
asserts and retracts, and thus provides the semantics for these operations -- and hence the name 
semantic component. 

We require that the two above mentioned components be compatible in the following way. 

Soundness  
Suppose that P0 is an initial program, that   a1,a2,. . .an   is a sequence of actions corresponding 

to primary tasks, and that P0,P1,.. .,Pn is the sequence of programs that result from executing the 
sequence of primary tasks (by means of various asserts and retracts). Let s0 be an initial situation 
constant, and let 

si = result( ai, si-1 )    for   i = 1,...,n,  be the corresponding sequence of situations in the semantic 
component. 

If the Prolog goal 
?- prop(c). 
succeeds for program Pn  where prop is a primary property, then 
{holds(--,s0), . .. } |= holds( prop(c), sn ) 

is a logical consequence in the semantic component, where the precondition set corresponds to the 
initial conditions given in P0, and c is an appropriate constant argument. 



< 72 >	 Visiting Professors

Completeness 
Suppose that s0 is a situation for the semantic component in which a finite number of initial 

properties pk are hypothesized to hold 

holds( pk(ck), s0 ), where the ci’s are constants, and suppose that P0 is the corresponding procedural 
component having a subprogram consisting of all the unit clauses  pk(ck). Suppose further that 
s0,s1,. . .,sn is a sequence of situations in the semantic component such that  si = result(ai,si-1) for i = 1,. 
. . ,n where each ai is an action. Let  P0,P1,. . . ,Pn  be the corresponding sequence of Prolog programs 
that result from executing the tasks corresponding to  a1,. . . ,an.

If  holds(prop(c), sn)  is a semantic consequence of the semantic component, including the 
preconditions, then the goal 

?- prop(c). 

succeeds for program Pn .

We are working on refining requirements for the two components so that compatibility would 
be provably true. Note well that there would then be no need to explicitly work with „two” compo-
nents if one could trust that the procedural component specified the semantic component faithfully 
and completely. It seems clear that the procedural component would be the preferable version of a 
specification to develop since it also serves as a prototype. In that ideal case, one would truly have 
an „executable specification”. 

We see the following advantages to the logic programming approach. 
■■ The use of logic makes both components of the specification highly declarative.
■■ �Formal mathematical and logical proof methods can be applied to the semantic 

component. 
■■ Logic programming theory applies to the procedural component. 
■■ �The procedural component can serve as an executable prototype to be used with the 

customer as a tool for further refining the specification. Behaviors that are wrong may be 
observed by executing the prototype. Subtleties of the requirements can be viewed in the 
context of the working prototype. 

■■ �There is the long range possibility that portions of the procedural component of the 
specification can itself be refined into the target software. That is, the specification may 
become part of the source code for the intended software product, thus providing the 
possibility that some of the target software is its own specification. 



>	 Praktyka Internetu	 < 73 >

References 
[Fis 91] Fisher J., Lee C., Software engineering education, logic programming, and A.I. tools, in: Proc. 2nd 

Annual Al Symposium for the California State University, California Polytechnic State University, 
San Luis Obispo, June 1991 

[Kow 87] Kowalski R., Logic Programming in Artificial Intelligence and Software Engineering, in: Intelli-
gent Knowledge-Based Systems, (eds.) O’Shea T., Self J., Thomas G., Harper and Row, 1987 

[Nil 80] Nilsson N., Principles of Artificial Intelligence, Tioga, 1980
[Prz 88] Przymusinski T., Non-monotonic reasoning vs. logic programming: a new perspective, in: 

Handbook of Formal Foundations of A.I., (eds.) Lilks Y., Partridge D., to appear. Abstract in Proc. 
AAAI’88

[Prz 9O] Przymusinska H., and Przymusinski, T., Semantic issues in deductive databases and logic pro-
grams, in: Formal Techniques in Art4ficial Intelligence, A Sourcebook, (ed.) Banerji R.B., Elsevier, 
1990 

[Gel 91] Gelder van A., Ross A., Schlipf J.S., The well-founded semantics for general logic programs, 
„Journal of the ACM” 1991, Vol. 38, No. 3, pages 620-650 

[Woo89] Woodcock J., Software Engineering Mathematics, Addison-Wesley, 1989 


