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Abstract 
 
The paper addresses the problem of  scheduling preemptive jobs on parallel unrelated ma-
chines in the presence of  renewable resource constraints and sequence-dependent setup costs. 
The objective is to minimize the weighted sum of  makespan and setups. The problem is 
known to be NP-hard. To solve this problem, a heuristic is proposed which uses column gen-
eration technique and an ant colony optimization algorithm. The results of  a computational 
experiment indicate that the heuristic is able to produce good results in reasonable computa-
tion time.  
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1 Introduction 
 
The paper deals with the problem of  resource-constrained preemptive scheduling with se-
quence dependent-setup costs.  

We consider a production cell, in which a number of  jobs are processed on parallel unre-
lated machines. We assume that each job is a production lot composed of  a large number of  
identical items, so that it can be treated as a continuously divisible one (jobs are preemptable). 
Any particular job can be divided into sublots which can be processed separately on the same 
or different machines. Machines are unrelated which means that the processing times of  a job 
may be different for different machines. Each job to be processed on a machine requires some 
resources, for example workers or tools. The resources are available in limited quantities at 
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every moment. When a machine switches from processing one job to another a setup cost is 
incurred, which depends on the order in which jobs are processed. The objective is the mini-
mization of  the cost function consisting of  the cost of  the makespan (the schedule length) 
and the total cost of  setups. The problem is known to be NP-hard.  

The considered problem arises in real-life systems that are encountered in a variety of  
industries, e.g., in chemical, paper, textile and ceramic industries [1, 2, 3, 4]. The preemptive 
production arises for example in the textile industry [3], where the processing of  any job (the 
article to be woven) on one of  the parallel machines (the looms) may be interrupted 
(preempted) and resumed on the other machine. Allowing job preemptions results in sched-
ules which are usually much shorter than schedules in which preemptions are forbidden. The 
example of  sequence dependent setups can be found in the ceramic industry, where all prod-
ucts (ceramic tiles) need setups in the molds, glazing lines, kilns and classification lines prior 
to production [4].  

Scheduling problems with setups have received considerable attention from researches dur-
ing last decades (see [5] for a survey). A lot of  papers consider problems with parallel machines 
and sequence dependent setups (e.g. [6, 7]) but the majority of  them do not allow preemptions 
of  jobs. Preemptive scheduling problems has been thoroughly investigated for the cases of  
parallel machines and renewable resource constraints (e.g. [8, 9]) but without setup considera-
tion. The problem of  preemptive scheduling where setups and resource constraints are taken 
into account and preemptions of  jobs are allowed has been considered in [10]. In that paper, 
a heuristic using a column generation technique and a genetic algorithm was proposed for the 
case when setup costs do not depend on the sequence of  jobs.  

In the present paper, we propose a heuristic for solving the resource constrained preemp-
tive scheduling problem with sequence-dependent setup costs. The heuristic proceeds in two 
steps. First, using a column generation (CG) algorithm, it finds an optimal (with minimal 
makespan cost) schedule for the problem of  scheduling preemptive jobs on unrelated ma-
chines with renewable resource constrains but without setup costs. This schedule consists of  
a number of  partial schedules. A partial schedule determines an assignment of  jobs to ma-
chines for parallel processing during some period of  time so that resource constraints are 
satisfied. Then, the partial schedules are sequenced by means of  an ant colony optimization 
(ACO) algorithm so as to minimize the total cost of  setups. 

The remainder of  the paper is organized as follows. In Section 2, the problem is formally 
described. Section 3 contains an illustrative example. The heuristic is presented in Section 
4. In Section 5 the results of  a computational experiment are presented and analysed. Sec-
tion 6 summarizes the paper. 
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2 Problem description 
 
The considered problem can be described as follows. There are n preemptive jobs to be pro-
cessed on m parallel unrelated machines. Each machine can process at most one job at a time 
and each job can be processed on no more than one machine at a time. Processing a job on  
a machine may be interrupted at any moment and resumed later on the same or another ma-
chine. The processing time of  job j (j = 1, . . ., n) is equal to  ݌௜௝ if  it is executed on machine  
i (i = 1, . . ., m). Jobs for their processing, besides the machines, require additional renewable 
resources. All required resources are granted to a job before its processing begins or resumes 
and they are returned by the job after finishing its processing or in the case of  its preemption. 
There are l types of  renewable resources. A resource of  type r (r = 1, . . ., l ) is available in an 
amount limited to ௥ܹ units at a time. The total usage of  resource r at any moment by jobs 
simultaneously executed on parallel machines cannot exceed the availability of  this resource. 
Job j during its processing on machine i uses ߙ௜௝௥ units of  the resource of  type r at every 
moment. When a machine switches from processing job j to processing job k, an appropriate 
setup of  the machine is needed. The cost of  this setup is equal to ݏ௝௞. When job j is the first 
job processed on a machine, the cost of  the setup is equal to ݏ௝଴. The cost of  a time unit is 
equal to ܿ଴. The objective is to minimize the cost function consisting of  the makespan cost 
and the total setup cost. 
 
3 Illustrative example 
 
To illustrate the problem and the solution method we present the following example. Consider 
the case of  the production cell with 2 parallel unrelated machines, 10 jobs and one renewable 
resource whose availability at any moment, ܹ, is equal to 10. The cost of  a time unit equals 
100. Job processing times, resource requirements and setup costs are shown in Figure 1.  

Figure 2 presents two schedules for this instance. Both the schedules are composed of  the 
same 10 partial schedules, but the orders in which these partial schedules are executed are 
different for each of  the schedule. The schedule shown in Figure 2a has a random order of  
the partial schedules, while Figure 2b presents the schedule with the order of  the partial sched-
ules obtained by the ACO algorithm which aims at the reduction of  the total setup cost. 
 In each of  the partial schedules, at most 2 jobs are processed simultaneously and the re-
source usage does not exceed the resource availability, e.g. in the partial schedule of  index 1, 
jobs 10 and 5 are processed simultaneously and use at every moment 1 and 8 units of  the 
resource, respectively. The resource availability ܹ =10, so the resource constraints are satisfied. 
The costs associated with the lengths of  the schedules in Figures 2a and 2b are the same (equal 
to 2937).  
 The schedules shown in Figures 2a and 2b have different orders of  the partial schedules, 
and consequently different total setup costs. The total setup cost for a schedule with a random 
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order of  the partial schedules (Figure 3b) equals 89, while the total setup cost for the schedule 
with an order of  the partial schedules provided by the ACO algorithm (Figure 3b) equals 42. 
The achieved reduction in the total setup cost is significant (it equals about 53%).  
 

 
 
Figure 1. Data for an illustrative example 
 
 
 

 
 
Figure 2. The schedules: a) the schedule before the reduction in the total setup cost, b) the schedule with the 
total setup cost reduced by the ACO algorithm.  
 
In Figure 2b, we can see that the partial schedules are placed so that setup costs between 
consecutive jobs are small. Also, partial schedules containing the same job are often processed 
one by one without placing another partial schedule between them. For example, consider job 
of  index 4 executed in partial schedules 6 and 9. In the schedule in Figure 2a, this job is 
preceded by jobs 6 and 8 (executed, respectively, in partial schedules 5 and 8). So, the total 

Setup costs
Processing times Resource Setup costs between jobs if a job starts

requirements as first on a machine

job 1 2 job 1 2 job 1 2 3 4 5 6 7 8 9 10 job
1 10 5 1 5 7 1 0 10 7 3 7 3 3 7 9 10 1 10
2 5 5 2 2 5 2 2 0 3 3 8 10 1 4 8 1 2 10
3 8 6 3 6 1 3 6 1 0 4 3 7 5 8 4 5 3 10
4 5 8 4 2 7 4 1 4 4 0 7 2 8 6 5 2 4 9
5 10 9 5 8 8 5 6 10 5 2 0 3 1 6 4 9 5 5
6 10 9 6 3 4 6 4 1 9 8 8 0 6 10 9 2 6 1
7 9 7 7 3 4 7 5 3 6 6 2 9 0 3 6 4 7 8
8 4 6 8 4 3 8 3 10 2 1 9 10 9 0 8 8 8 1
9 6 8 9 1 8 9 1 8 1 7 3 4 1 8 0 5 9 10

10 2 10 10 1 5 10 2 8 2 3 5 1 6 4 3 0 10 1

machine machine job

a)
m1 6 9 8 6 4 2 8 4 9
m2 5 7 1 6 3 7 5 3 5

partial schedule
 index: 1 2 3 4 5 6 7 8 9

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

The total setup cost is equal to 89

b)
m1 8 4 6 2 9
m2 6 3 7 5 7 3 5 1

partial schedule
 index: 4 8 6 9 2 5 7 1 3

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

The total setup cost is equal to 42

10

10

10

10
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setup cost incurred by switching from job 6 to job 4 and from job 8 to job 4 is equal to 8+1=9. 
In the schedule in Figure 2b, job 4 is preceded only by job 8 (as partial schedules 6 and 9 are 
executed one after another without interruption) which results in setup cost equal to 1. 
 
4 The heuristic 
 
The heuristic proceeds in two steps which can be outlined as follows. 

1. A set of  partial schedules satisfying resource constraints is found by means of  the col-
umn generation algorithm so as to minimize the makespan cost.  

2. The ant colony optimization algorithm finds the order of  the partial schedules so as to 
minimize the total setup cost. 

 
4.1  Column generation algorithm 
 
The theoretical basis of  the CG algorithm has been provided by Dantzig and Wolfe [11] (for 
applications of  the CG technique see e.g. [12, 13, 14]). 

Using column generation technique, we avoid the difficulty of  explicitly generating all col-
umns of  the problem, i.e. all possible partial schedules (in our work a column corresponds to  
a partial schedule) by working with only a subset of  the columns and adding new columns as 
needed (when they improve the solution).  

The CG algorithm is an iterative procedure which starts from an initial set of  columns and, 
in subsequent iterations, solves a linear programming (LP) problem with all columns generated 
so far, and then generates a new column.  
 Let us denote by ܲఉ  the partial schedule of  index ߚ ,ߚ ∈ is the set of ܤ where ,ܤ  the indices 
of  all possible partial schedules. Partial schedule ܲఉ is determined by its duration ∆ఉ and the 
values of ௜௝ఉݒ	  		(	݅ = 1,… ,݉, ݆ = 1,… , ݊)	representing the assignment of  jobs to machines, 

where	ݒ௜௝ఉ 	= 1 if  job j is processed on machine i in partial schedule ܲ ఉ , and 	ݒ௜௝ఉ 	= 0, otherwise.  
At each iteration of  the CG algorithm, the cost of  the makespan (makespan is equal to the 

sum of  the partial schedule durations) is minimized by solving the following LP problem: 
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where ∆ఉ (ߚ ∈ ෨ܤ ) are decision variables. ܤ෨	denotes a subset of  set ܤ, which contains the indices 
of  the already generated columns. The values of ௜௝ఉݒ	  ߚ)		 ∈ ,෨ܤ ݅ = 1,… ,݉, ݆ = 1,… , ݊) are 
fixed. They are given in advance before the first iteration and then calculated in each of  the 
successive iterations. Constraints (2) ensure that all jobs are completed.   
 In a successive iteration, the current set ܤ෨  may be extended by a new index ߚᇱ	(ߚᇱ ∈  .(෨ܤ\ܤ
In order to find the assignment of  jobs to machines in the new column with index  ߚᇱ the 
following problem is solved: 
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where ߨ௝∗ ( nj ,...,1= ) are the optimal values of  dual variables corresponding to constraints (2).  
 Constraints (5) and (6) ensure that in each partial schedule, respectively, each machine 
works on at most one job at a time and each job is processed on no more than one machine 
at a time. Due to constraint (7), in each partial schedule, the usage of  each resource at every 
moment does not exceed its availability. A new iteration of  the CG algorithm begins if  ∑ ∑ ௜௝ఉᇲݒ∗௝ߨ ௜௝݌ − 1 > 0ൗ௡௝ୀଵ௠௜ୀଵ , otherwise the optimal solution is found and the algorithm 
stops. 
 
4.2  Ant colony optimization algorithm 
 
Ant colony optimization algorithms have been proposed by Dorigo at all. [15] in 1996, and since 
then they have been successfully applied to a wide range of  engineering problems (see e.g.  [16]). 
 ACO algorithms are inspired by social behavior of  ants, which are able to find the shortest 
path from the nest to the source of  food. Ants communicate with each other by means of  
pheromone trails. When ants leave their nest in search for a food source, they move randomly 
in different directions depositing pheromone wherever they go (see Figure 3). The ants that 
have found the food, carry some of  it back to the nest and start again following their trail and 
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depositing more pheromone. So, on the shortest path to the food more pheromone will be 
deposited than on the other paths. Other ants, which leave the nest later, most likely choose 
the path with the greatest concentration of  the pheromone. Moreover, pheromone evaporates 
over time, disappearing from not used paths. So, in the end, all the ants are moving along the 
shortest path from the nest to the food source.  
 

 
 
Figure 3. The shortest path to the food 
    
The structure of  the ACO algorithm used in this paper can be described as follows: 
1. Set the initial pheromone values. 
2. Generate and evaluate an initial population of  ants. 
3. While the termination condition is not met, do the following: 

a. Update the pheromone values. 
b. Update the solution represented by each ant on the basis of  the pheromone concen-

tration. 
c. Evaluate each ant.  

4. Return the best solution found. 
In this paper, the ACO algorithm is used for finding a sequence of  the partial schedules 

(created by the CG algorithm) which minimizes the total setup cost. A candidate solution is 
and ant which represents a sequence of  the indices of  the partial schedules. An initial popu-
lation of  ants is randomly generated. The total setup cost is taken as an objective function. 
Each ant is evaluated according to an objective function. In consecutive iterations of  the ACO 
algorithm, the pheromone matrix [߬௜௝] is determined in the following way. The pheromone 
value ߬௜௝ is calculated according to the following formula: 
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 ߬௜௝ = ௜௝′߬ߩ + ∆߬௜௝,           (9) 
 
where i  ( bi ,...,1= ) is the index of  the position in the sequence represented by an ant, b is 
the number of  partial schedules, j ( bj ,...,1= ) is the index of  the partial schedule, ߩ	is pher-
omone evaporation rate, ߬′௜௝ is the pheromone value in the previous iteration and ∆߬௜௝ is  
a change in the pheromone value.  

The value of  ∆߬௜௝ is calculated as follows: 
 ∆߬௜௝ = ௜௝ܭ1 ෍ ቊ ொ௢௕௝(௞) if value	݆	is chosen by ant	݇	to be put in position	݅0 otherwise                                                              

௣௦௜௭௘
௞ୀଵ 																	(10) 

 
where ݁ݖ݅ݏ݌ is the size of  the population of  ants, ݆ܾ݋(݇) is the objective function value (the 
total setup cost) for ant  ݇, 	ܭ௜௝ is the number of  ants in the population for which value ݆ is 
chosen to be put in position ݅. ܳ is a given constant.  
 Once the pheromone is updated, the ants (the sequences of  the partial schedule indices) 
are changed in the following way. In each ant, the partial schedule index ݆ is chosen to be put 
in position i  with the probability which is given by the following expression: 
 ௜ܲ௝ = ఛ೔ೕ∑ ఛ೔ೕೕ್సభ 		. 
   
Consequently, in each iteration, the best ants are built.  
In our implementation, the values of  the parameters of  the ACO algorithm are as follows: ݁ݖ݅ݏ݌ = 5, ߩ = 0.25, ܳ = 1000. The algorithm stops after 10000 iterations. 

The example of  the pheromone matrix and one ant is shown in Figure 5. The pheromone 
matrix contains pheromone values calculated according to equations (9) and (10). Given these 
values, a new ant is constructed, so that a partial schedule for which the pheromone value is 
greater is more likely chosen to be put in a given position in the ant. For example, while con-
sidering position 1 in the ant, partial schedules of  indices 4 and 5 (for which ߬௜௝ = 15.23 and 
13.02, respectively) have a greater chance to be placed in this position than the other partial 
schedules (for which ߬௜௝ = 2.17). The figure shows the ant constructed on the basis of  the 
given pheromone matrix.  

The order of  the partial schedules represented by this ant is: 4, 3, 5, 2, 1. 
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Figure 4.  The pheromone matrix and the ant  
 
5 Computational experiment 
 
In this section, we present the results of  a computational experiment which was carried out 
to evaluate the proposed heuristic. Tests were performed for problems with the number of  
jobs ݊ = 25 and 50, the number of  machines ݉ = 2, 4 and 6, and one resource. Processing 
times, resource requirements and setup costs were generated from a discrete uniform distri-
bution over the interval [1,10]. The resource availability ܹ	was set at 10. All presented results 
are average values over 5 problems. 
 The results of  a computational experiment are shown in Figures 5 and 6. Figure 5 presents 
the reduction in the total setup cost achieved by the ACO algorithm defined as follows: ߠ = ܵ − ஺ܵ஼ைܵ × 100%, 
where ܵ is the total setup cost for the best solution (ant) in the initial population, and ஺ܵ஼ை is 
the total setup cost for the best solution found by the ACO algorithm. 

In Figure 5, we can see that the reduction in the total setup cost, ߠ, achieved by the ACO 
algorithm is quite significant. The greatest value of  was obtained for problems (47.19%) ߠ 
with 10 jobs and 2 machines. ߠ  decreases with increasing the number of  jobs. For problems 
with 50 jobs and 2 machines the average value of equals 22.42%. The values of ߠ   are less ߠ 

The pheromone matrix:

1 2 3 4 5

1 2.17 14.79 5.31 2.17 13.53

2 2.17 3.10 2.17 14.52 2.17

3 2.17 16.10 2.17 12.82 2.17

4 15.23 2.17 20.39 15.33 2.17

5 13.02 2.17 17.72 12.82 14.67

The ant:

4 3 5 2 1
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the number of  machines than by the number of  jobs, though also in this case, we observe that ߠ decreases as the number of  machines grows. 
 

 
 
Figure 5. The reduction in the total setup cost achieved by the ACO algorithm 
 
The computation times of  the heuristic are small – they do not exceed 6 seconds for all the 
considered problems. The computation time increases with the number of  jobs. The number of  
machines affects the computation times very slightly. 
 

 
 
Figure 6. The computation times of the heuristic 
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6 Summary and concluding remarks 
 
In the paper, the heuristic has been presented which joins the column generation technique 
and the ant colony optimization algorithm to solve the problem of  resource constrained 
preemptive scheduling on unrelated machines with sequence-dependent setup costs. The aim 
was to minimize the sum of  makespan and setup costs. The results of  the computational 
experiment have shown that the ant colony optimization algorithm significantly reduces the 
total setup costs in the schedule with minimal cost makespan produced by the column gener-
ation algorithm. 
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Zastosowanie algorytmu mrówkowego do szeregowania zadań na maszynach  
równoległych z uwzględnieniem kosztów przezbrojeń zależnych od kolejności zadań 

 
 
Streszczenie 
 
Artykuł dotyczy zagadnienia szeregowania zadań podzielnych na równoległych dowolnych 
maszynach z uwzględnieniem ograniczeń na dostępność zasobów odnawialnych oraz kosztów 
przezbrojeń zależnych od kolejności wykonywania zadań. Celem jest minimalizacja ważonej 
sumy czasu trwania harmonogramu i przezbrojeń. Zagadnienie należy do klasy problemów 
NP-trudnych. W celu jego rozwiązania, zaproponowany został algorytm heurystyczny, wyko-
rzystujący technikę generacji kolumn, oraz algorytm mrówkowy. Wyniki eksperymentu obli-
czeniowego wskazują, że algorytm ten jest zdolny dostarczyć dobrej jakości wyniki w rozsąd-
nym czasie.  
 
Słowa kluczowe: algorytm mrówkowy, dowolne maszyny, koszty przezbrojeń zależne od kolejności zadań, 
ograniczenia zasobowe  
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